首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41931篇
  免费   87篇
  国内免费   116篇
系统科学   392篇
丛书文集   1022篇
教育与普及   107篇
理论与方法论   236篇
现状及发展   18788篇
研究方法   1598篇
综合类   19506篇
自然研究   485篇
  2013年   213篇
  2012年   527篇
  2011年   1081篇
  2010年   240篇
  2008年   703篇
  2007年   753篇
  2006年   748篇
  2005年   766篇
  2004年   687篇
  2003年   778篇
  2002年   715篇
  2001年   1286篇
  2000年   1220篇
  1999年   768篇
  1992年   739篇
  1991年   606篇
  1990年   645篇
  1989年   643篇
  1988年   643篇
  1987年   637篇
  1986年   650篇
  1985年   792篇
  1984年   622篇
  1983年   539篇
  1982年   470篇
  1981年   496篇
  1980年   598篇
  1979年   1302篇
  1978年   1116篇
  1977年   1114篇
  1976年   825篇
  1975年   872篇
  1974年   1302篇
  1973年   1052篇
  1972年   1072篇
  1971年   1326篇
  1970年   1764篇
  1969年   1385篇
  1968年   1269篇
  1967年   1329篇
  1966年   1127篇
  1965年   827篇
  1964年   220篇
  1959年   503篇
  1958年   731篇
  1957年   577篇
  1956年   486篇
  1955年   442篇
  1954年   483篇
  1948年   265篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
621.
辣根过氧化物酶处理五氯酚过程的毒性特征   总被引:3,自引:0,他引:3  
张国平  J.A.Nicell  邹永廖 《科学通报》2000,45(12):1267-1271
用酶的催化聚合作用来处理酚类及芳香胺类化合物的污染是近年来受到重视的新方法,但人们很少研究废水在这一处理过程中的毒性变化。采用辣根过氧化物酶和过氧化氢在pH值为4时处理含五氯酚的模拟废水,集中研究了该过程的发光菌毒性特性。结果表明,五氯酚溶液的毒性在处理后大为降低,总毒性可降低至起始毒性的15%左右。处理过程的产物有少量溶解在水中,也构成一部分毒性。  相似文献   
622.
623.
624.
Plants have an innate immunity system to defend themselves against pathogens. With the primary immune system, plants recognize microbe-associated molecular patterns (MAMPs) of potential pathogens through pattern recognition receptors (PRRs) that mediate a basal defense response. Plant pathogens suppress this basal defense response by means of effectors that enable them to cause disease. With the secondary immune system, plants have gained the ability to recognize effector-induced perturbations of host targets through resistance proteins (RPs) that mediate a strong local defense response that stops pathogen growth. Both primary and secondary immune responses in plants depend on germ line-encoded PRRs and RPs. During induction of local immune responses, systemic immune responses also become activated, which predispose plants to become more resistant to subsequent pathogen attacks. This review gives an update on recent findings that have enhanced our understanding of plant innate immunity and the arms race between plants and their pathogens. Received 24 June 2007; received after revision 18 July 2007; accepted 15 August 2007  相似文献   
625.
Glycosylation constitutes one of the most important posttranslational modifications employed by biological systems to modulate protein biophysical properties. Due to the direct biochemical and biomedical implications of achieving control over protein stability and function by chemical means, there has been great interest in recent years towards the development of chemical strategies for protein glycosylation. Since current knowledge about glycoprotein biophysics has been mainly derived from the study of naturally glycosylated proteins, chemical glycosylation provides novel insights into its mechanistic understanding by affording control over glycosylation parameters. This review presents a survey of the effects that natural and chemical glycosylation have on the fundamental biophysical properties of proteins (structure, dynamics, stability, and function). This is complemented by a mechanistic discussion of how glycans achieve such effects and discussion of the implications of employing chemical glycosylation as a tool to exert control over protein biophysical properties within biochemical and biomedical applications. Received 15 December 2006; received after revision 28 March 2007; accepted 25 April 2007  相似文献   
626.
Refsum disease is a rare, inherited neurodegenerative disorder characterized by accumulation of the dietary branched-chain fatty acid phytanic acid in plasma and tissues caused by a defect in the alphaoxidation pathway. The accumulation of phytanic acid is believed to be the main pathophysiological cause of the disease. However, the exact mechanism(s) by which phytanic acid exerts its toxicity have not been resolved. In this study, the effect of phytanic acid on mitochondrial respiration was investigated. The results show that in digitonin-permeabilized fibroblasts, phytanic acid decreases ATP synthesis, whereas substrate oxidation per se is not affected. Importantly, studies in intact fibroblasts revealed that phytanic acid decreases both the mitochondrial membrane potential and NAD(P)H autofluorescence. Taken together, the results described here show that unesterified phytanic acid exerts its toxic effect mainly through its protonophoric action, at least in human skin fibroblasts. Received 4 August 2007; received after revision 26 September 2007; accepted 10 October 2007 J. C. Komen, F. Distelmaier: These authors contributed equally to this work.  相似文献   
627.
Glycolysis is an evolutionary conserved metabolic pathway that provides small amounts of energy in the form of ATP when compared to other pathways such as oxidative phosphorylation or fatty acid oxidation. The ATP levels inside metabolically active cells are not constant and the local ATP level will depend on the site of production as well as the respective rates of ATP production, diffusion and consumption. Membrane ion transporters (pumps, exchangers and channels) are located at sites distal to the major sources of ATP formation (the mitochondria). We review evidence that the glycolytic complex is associated with membranes; both at the plasmalemma and with membranes of the endo/sarcoplasmic reticular network. We examine the evidence for the concept that many of the ion transporters are regulated preferentially by the glycolytic process. These include the Na+/K+-ATPase, the H+-ATPase, various types of Ca2+-ATPases, the Na+/H+ exchanger, the ATP-sensitive K+ channel, cation channels, Na+ channels, Ca2+ channels and other channels involved in intracellular Ca2+ homeostasis. Regulation of these pumps, exchangers and ion channels by the glycolytic process has important consequences in a variety of physiological and pathophysiological processes, and a better understanding of this mode of regulation may have important consequences for developing future strategies in combating disease and developing novel therapeutic approaches. Received 20 July 2007; received after revision 30 July 2007; accepted 17 August 2007  相似文献   
628.
Activating and inactivating mutations of SHP-2 are responsible, respectively, for the Noonan (NS) and the LEOPARD (LS) syndromes. Clinically, these developmental disorders overlap greatly, resulting in the apparent paradox of similar diseases caused by mutations that oppositely influence SHP-2 phosphatase activity. While the mechanisms remain unclear, recent functional analysis of SHP-2, along with the identification of other genes involved in NS and in other related syndromes (neurofibromatosis-1, Costello and cardio-facio-cutaneous syndromes), strongly suggest that Ras/MAPK represents the major signaling pathway deregulated by SHP-2 mutants. We discuss the idea that, with the exception of LS mutations that have been shown to exert a dominant negative effect, all disease-causing mutations involved in Ras/MAPK-mediated signaling, including SHP-2, might lead to enhanced MAPK activation. This suggests that a narrow range of MAPK signaling is required for appropriate development. We also discuss the possibility that LS mutations may not simply exhibit dominant negative activity. Received 30 November 2006; received after revision 8 February 2007; accepted 13 March 2007  相似文献   
629.
630.
Hypertriglyceridemia is a hallmark of many disorders, including metabolic syndrome, diabetes, atherosclerosis and obesity. A well-known cause is the deficiency of lipoprotein lipase (LPL), a key enzyme in plasma triglyceride hydrolysis. Mice carrying the combined lipase deficiency (cld) mutation show severe hypertriglyceridemia owing to a decrease in the activity of LPL and a related enzyme, hepatic lipase (HL), caused by impaired maturation of nascent LPL and hepatic lipase polypeptides in the endoplasmic reticulum (ER). Here we identify the gene containing the cld mutation as Tmem112 and rename it Lmf1 (Lipase maturation factor 1). Lmf1 encodes a transmembrane protein with an evolutionarily conserved domain of unknown function that localizes to the ER. A human subject homozygous for a deleterious mutation in LMF1 also shows combined lipase deficiency with concomitant hypertriglyceridemia and associated disorders. Thus, through its profound effect on lipase activity, LMF1 emerges as an important candidate gene in hypertriglyceridemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号