首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31126篇
  免费   80篇
  国内免费   121篇
系统科学   302篇
丛书文集   563篇
教育与普及   98篇
理论与方法论   94篇
现状及发展   14548篇
研究方法   1132篇
综合类   14291篇
自然研究   299篇
  2012年   350篇
  2011年   680篇
  2009年   178篇
  2008年   485篇
  2007年   550篇
  2006年   488篇
  2005年   521篇
  2004年   546篇
  2003年   558篇
  2002年   489篇
  2001年   914篇
  2000年   951篇
  1999年   574篇
  1994年   362篇
  1992年   536篇
  1991年   426篇
  1990年   513篇
  1989年   475篇
  1988年   476篇
  1987年   494篇
  1986年   519篇
  1985年   619篇
  1984年   429篇
  1983年   430篇
  1982年   381篇
  1981年   411篇
  1980年   467篇
  1979年   986篇
  1978年   815篇
  1977年   791篇
  1976年   614篇
  1975年   699篇
  1974年   965篇
  1973年   823篇
  1972年   794篇
  1971年   1016篇
  1970年   1180篇
  1969年   1025篇
  1968年   939篇
  1967年   910篇
  1966年   786篇
  1965年   589篇
  1964年   208篇
  1959年   339篇
  1958年   571篇
  1957年   418篇
  1956年   346篇
  1955年   347篇
  1954年   333篇
  1948年   232篇
排序方式: 共有10000条查询结果,搜索用时 781 毫秒
601.
602.
Beside its role as a neurotransmitter in the central nervous system, serotonin appears to be a central physiologic mediator of many gastrointestinal (GI) functions and a mediator of the brain-gut connection. By acting directly and via modulation of the enteric nervous system, serotonin has numerous effects on the GI tract. The main gut disturbances in which serotonin is involved are acute chemotherapy-induced nausea and vomiting, carcinoid syndrome and irritable bowel syndrome. Serotonin also has mitogenic properties. Platelet-derived serotonin is involved in liver regeneration after partial hepatectomy. In diseased liver, serotonin may play a crucial role in the progression of hepatic fibrosis and the pathogenesis of steatohepatitis. Better understanding of the role of the serotonin receptor subtypes and serotonin mechanisms of action in the liver and gut may open new therapeutic strategies in hepato-gastrointestinal diseases. Received 15 August 2007; received after revision 1 November 2007; accepted 5 November 2007  相似文献   
603.
Cajal bodies (CBs) and Gems are nuclear domains that contain factors responsible for spliceosomal small nuclear ribonucleoprotein (snRNP) biogenesis. The marker protein for CBs is coilin. In addition to snRNPs, coilin and other factors, canonical CBs contain the survivor of motor neuron protein (SMN). SMN can also localize to Gems. Considering the important role that coilin plays in the formation and composition of CBs, we tested the splicing efficiency of several cell lines that vary in regards to coilin level and modification using an artificial reporter substrate. We found that cells with both hypomethylated coilin and Gems are more efficient at reporter splicing compared to cells in which SMN localizes to CBs. In contrast, coilin reduction, which induces Gem formation, decreases cell proliferation and artificial reporter splicing. These findings demonstrate that coilin modifications or levels impact artificial reporter splicing, possibly by influencing snRNP biogenesis. Received 26 December 2007; received after revision 5 February 2008; accepted 7 February 2008  相似文献   
604.
Molecular and Cellular Basis of Regeneration and Tissue Repair   总被引:3,自引:0,他引:3  
Planarians possess amazing abilities to regulate tissue homeostasis and regenerate missing body parts. These features reside on the presence of a population of pluripotent/totipotent stem cells, the neoblasts, which are considered as the only planarian cells able to proliferate in the asexual strains. Neoblast distribution has been identified by mapping the cells incorporating bromodeoxyuridine, analyzing mitotic figures and using cell proliferation markers. Recently identified molecular markers specifically label subgroups of neoblasts, revealing thus the heterogeneity of the planarian stem cell population. Therefore, the apparent totipotency of neoblasts probably reflects the composite activities of multiple stem cell types. First steps have been undertaken to understand how neoblasts and differentiated cells communicate with each other to adapt the self-renewal and differentiation rates of neoblasts to the demands of the body. Moreover, the introduction of molecular resource database on planarians now paves the way to renewed strategies to understand planarian regeneration and stem cell-related issues.  相似文献   
605.
The utility F-box for protein destruction   总被引:3,自引:1,他引:2  
A signature feature of all living organisms is their utilization of proteins to construct molecular machineries that undertake the complex network of cellular activities. The abundance of a protein element is temporally and spatially regulated in two opposing aspects: de novo synthesis to manufacture the required amount of the protein, and destruction of the protein when it is in excess or no longer needed. One major route of protein destruction is coordinated by a set of conserved molecules, the F-box proteins, which promote ubiquitination in the ubiquitin-proteasome pathway. Here we discuss the functions of F-box proteins in several cellular scenarios including cell cycle progression, synapse formation, plant hormone responses, and the circadian clock. We particularly emphasize the mechanisms whereby F-box proteins recruit specific substrates and regulate their abundance in the context of SCF E3 ligases. For some exceptions, we also review how F-box proteins function through non-SCF mechanisms.  相似文献   
606.
Meizothrombin is the physiologically active intermediate generated by a single cleavage of prothrombin at R320 to separate the A and B chains. Recent evidence has suggested that meizothrombin, like thrombin, is a Na(+)-activated enzyme. In this study we present the first X-ray crystal structure of human meizothrombin desF1 solved in the presence of the active site inhibitor PPACK at 2.1 A resolution. The structure reveals a Na(+) binding site whose architecture is practically identical to that of human thrombin. Stopped-flow measurements of Na(+) binding to meizothrombin desF1 document a slow phase of fluorescence change with a k(obs) decreasing hyperbolically with increasing [Na(+)], consistent with the existence of three conformations in equilibrium, E*, E and E:Na(+), as for human thrombin. Evidence that meizothrombin exists in multiple conformations provides valuable new information for studies of the mechanism of prothrombin activation.  相似文献   
607.
Zinc binding to the peptide replica and analogs to residues 93–115 of horse liver alcohol dehydrogenase (ADH) was examined by competition of the peptides and the chromophoric chelator 4-(2- pyridylazo)resorcinol for zinc and X-ray absorption fine structure analysis of the zinc ligands. In the enzyme, zinc is coordinated by four Cys residues. In the peptide replica, zinc is bound to three Cys and one His residue. A four-Cys zinc coordination is observed only when His is removed, leading to increased zinc stability. ADH crystal structures reveal that the ε-amino group of the conserved residue Lys323 is within H-bond distance of the backbone amide oxygens of residues 103, 105 and 108, likely stabilizing the zinc coordination in the enzyme. The peptide data thus indicate structural strain and increased energy in the zinc-binding site in the protein, characteristic of an entatic state, implying a functional nature for this zinc site. Received 3 July 2008; received after revision 11 August 2008; accepted 1 September 2008  相似文献   
608.
Cardiolipin, the heart of mitochondrial metabolism   总被引:5,自引:0,他引:5  
Cardiolipin is a unique phospholipid, which is almost exclusively localized in the mitochondrial inner membrane where it is synthesized from phosphatidylglycerol and cytidinediphosphate-diacylglycerol. After primary synthesis, the mature acyl chain composition of cardiolipin is achieved by at least two remodeling mechanisms. In the mitochondrial membrane cardiolipin plays an important role in energy metabolism, mainly by providing stability for the individual enzymes and enzyme complexes involved in energy production. Moreover, cardiolipin is involved in different stages of the mitochondrial apoptotic process and in mitochondrial membrane dynamics. Cardiolipin alterations have been described in various pathological conditions. Patients suffering from Barth syndrome have an altered cardiolipin homeostasis caused by a primary deficiency in cardiolipin remodeling. Alterations in cardiolipin content or composition have also been reported in more frequent diseases such as diabetes and heart failure. In this review we provide an overview of cardiolipin metabolism, function and its role in different pathological states. Received 16 January 2008; received after revision 26 February 2008; accepted 26 March 2008  相似文献   
609.
To identify common variants influencing body mass index (BMI), we analyzed genome-wide association data from 16,876 individuals of European descent. After previously reported variants in FTO, the strongest association signal (rs17782313, P = 2.9 x 10(-6)) mapped 188 kb downstream of MC4R (melanocortin-4 receptor), mutations of which are the leading cause of monogenic severe childhood-onset obesity. We confirmed the BMI association in 60,352 adults (per-allele effect = 0.05 Z-score units; P = 2.8 x 10(-15)) and 5,988 children aged 7-11 (0.13 Z-score units; P = 1.5 x 10(-8)). In case-control analyses (n = 10,583), the odds for severe childhood obesity reached 1.30 (P = 8.0 x 10(-11)). Furthermore, we observed overtransmission of the risk allele to obese offspring in 660 families (P (pedigree disequilibrium test average; PDT-avg) = 2.4 x 10(-4)). The SNP location and patterns of phenotypic associations are consistent with effects mediated through altered MC4R function. Our findings establish that common variants near MC4R influence fat mass, weight and obesity risk at the population level and reinforce the need for large-scale data integration to identify variants influencing continuous biomedical traits.  相似文献   
610.
Digital clubbing, recognized by Hippocrates in the fifth century BC, is the outward hallmark of pulmonary hypertrophic osteoarthropathy, a clinical constellation that develops secondary to various acquired diseases, especially intrathoracic neoplasm. The pathogenesis of clubbing and hypertrophic osteoarthropathy has hitherto been poorly understood, but a clinically indistinguishable primary (idiopathic) form of hypertrophic osteoarthropathy (PHO) is recognized. This familial disorder can cause diagnostic confusion, as well as significant disability. By autozygosity methods, we mapped PHO to chromosome 4q33-q34 and identified mutations in HPGD, encoding 15-hydroxyprostaglandin dehydrogenase, the main enzyme of prostaglandin degradation. Homozygous individuals develop PHO secondary to chronically elevated prostaglandin E(2) levels. Heterozygous relatives also show milder biochemical and clinical manifestations. These findings not only suggest therapies for PHO, but also imply that clubbing secondary to other pathologies may be prostaglandin mediated. Testing for HPGD mutations and biochemical testing for HPGD deficiency in patients with unexplained clubbing might help to obviate extensive searches for occult pathology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号