首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17305篇
  免费   43篇
  国内免费   54篇
系统科学   254篇
丛书文集   444篇
教育与普及   36篇
理论与方法论   50篇
现状及发展   7975篇
研究方法   732篇
综合类   7762篇
自然研究   149篇
  2012年   206篇
  2011年   419篇
  2010年   99篇
  2009年   94篇
  2008年   275篇
  2007年   348篇
  2006年   295篇
  2005年   304篇
  2004年   275篇
  2003年   330篇
  2002年   265篇
  2001年   611篇
  2000年   612篇
  1999年   344篇
  1992年   329篇
  1991年   253篇
  1990年   298篇
  1989年   271篇
  1988年   262篇
  1987年   277篇
  1986年   284篇
  1985年   338篇
  1984年   242篇
  1983年   220篇
  1982年   202篇
  1981年   238篇
  1980年   261篇
  1979年   568篇
  1978年   463篇
  1977年   469篇
  1976年   351篇
  1975年   374篇
  1974年   583篇
  1973年   455篇
  1972年   416篇
  1971年   510篇
  1970年   656篇
  1969年   573篇
  1968年   493篇
  1967年   531篇
  1966年   440篇
  1965年   332篇
  1964年   86篇
  1959年   198篇
  1958年   293篇
  1957年   192篇
  1956年   172篇
  1955年   167篇
  1954年   159篇
  1948年   87篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
261.
The exposure of phosphatidylserine (PS) at the cell surface plays a critical role in blood coagulation and serves as a macrophage recognition moiety for the engulfment of apoptotic cells. Previous observations have shown that a high extracellular [K+] and selective K+ channel blockers inhibit PS exposure in platelets and erythrocytes. Here we show that the rate of PS exposure in erythrocytes decreases by ~50% when the intracellular [K+] increases from 0 to physiological concentrations. Using resealed erythrocyte membranes, we further show that lipid scrambling is inducible by raising the intracellular [Ca2+] and that K+ ions have a direct inhibitory effect on this process. Lipid scrambling in resealed ghosts occurs in the absence of cell shrinkage and microvesicle formation, processes that are generally attributed to Ca2+-induced lipid scrambling in intact erythrocytes. Thus, opening of Ca2+-sensitive K+ channels causes loss of intracellular K+ that results in reduced intrinsic inhibitory effect of these ions on scramblase activity. Received 11 September 2008; received after revision 17 October 2008; accepted 27 October 2008  相似文献   
262.
Cytoplasmic translation is under sophisticated control but how cells adapt its rate to constitutive loss of mitochondrial oxidative phosphorylation is unknown. Here we show that translation is repressed in cells with the pathogenic A3243G mtDNA mutation or in mtDNA-less ρ0 cells by at least two distinct pathways, one transiently targeting elongation factor eEF-2 and the other initiation factor eIF-2α constitutively. Under conditions of exponential cell growth and mammalian target of rapamycin (mTOR) activation, eEF-2 becomes transiently phosphorylated by an AMP-activated protein kinase (AMPK)-dependent pathway, especially high in mutant cells. Independent of AMPK and mTOR, eIF-2α is constitutively phosphorylated in mutant cells, likely a signature of endoplasmic reticulum (ER)-stress response induced by the loss of oxidative phosphorylation. While the AMPK/eEF-2K/eEF-2 pathway appears to function in adaptation to physiological fluctuations in ATP levels in the mutant cells, the ER stress signified by constitutive protein synthesis inhibition through eIF-2α-mediated repression of translation initiation may have pathobiochemical consequences. Received 29 October 2008; received after revision 11 December 2008; accepted 16 December 2008  相似文献   
263.
Methylation of lysine residues of histones is associated with functionally distinct regions of chromatin, and, therefore, is an important epigenetic mark. Over the past few years, several enzymes that catalyze this covalent modification on different lysine residues of histones have been discovered. Intriguingly, histone lysine methylation has also been shown to be cross-regulated by histone ubiquitination or the enzymes that catalyze this modification. These covalent modifications and their cross-talks play important roles in regulation of gene expression, heterochromatin formation, genome stability, and cancer. Thus, there has been a very rapid progress within past several years towards elucidating the molecular basis of histone lysine methylation and ubiquitination, and their aberrations in human diseases. Here, we discuss these covalent modifications with their cross-regulation and roles in controlling gene expression and stability. Received 24 September 2008; received after revision 21 November 2008; accepted 28 November 2008  相似文献   
264.
265.
266.
267.
268.
269.
Two chitinases, able to use tetra-N-acetylglucosamine, chitin and chitosan as substrates, were characterized after purification from Carica papaya latex. The complete amino acid sequence of the major form and about 40% of the minor one were determined through proteolytic digestions and mass spectroscopy analysis. Sequencing demonstrated that both papaya chitinases are members of the family 19 of glycosyl hydrolases (GH19). Based on the known 3-D structures of other members of family GH19, it was expected that papaya chitinases would adopt all-alpha structures. However, circular dichroism and infrared spectroscopy indicated, for the papaya chitinases, a content of 15–20% of extended structures besides the expected 40% of alpha helices. Since the fully sequenced papaya chitinase contains a large number of proline residues the possibility that papaya chitinase contains polyproline II stretches was examined in the context of their resistance against proteolytic degradation. Received 11 July 2006; received after revision 13 October 2006; accepted 25 October 2006  相似文献   
270.
Microfracture of subchondral bone results in intrinsic repair of cartilage defects. Stem or progenitor cells from bone marrow have been proposed to be involved in this regenerative process. Here, we demonstrate for the first time that mesenchymal stem (MS) cells can in fact be recovered from matrix material saturated with cells from bone marrow after microfracture. This also introduces a new technique for MS cell isolation during arthroscopic treatment. MS cells were phenotyped using specific cell surface antibodies. Differentiation of the MS cells into the adipogenic, chondrogenic and osteogenic lineage could be demonstrated by cultivation of MS cells as a monolayer, as micromass bodies or mesenchymal microspheres. This study demonstrates that MS cells can be attracted to a cartilage defect by guidance of a collagenous matrix after perforating subchondral bone. Protocols for application of MS cells in restoration of cartilage tissue include an initial invasive biopsy to obtain the MS cells and time-wasting in vitro proliferation and possibly differentiation of the cells before implantation. The new technique already includes attraction of MS cells to sites of cartilage defects and therefore may overcome the necessity of in vitro proliferation and differentiation of MS cells prior to transplantation. Received 3 November 2005; received after revision 15 December 2005; accepted 4 January 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号