首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39466篇
  免费   130篇
  国内免费   155篇
系统科学   369篇
丛书文集   831篇
教育与普及   68篇
理论与方法论   125篇
现状及发展   18008篇
研究方法   1567篇
综合类   18198篇
自然研究   585篇
  2013年   248篇
  2012年   534篇
  2011年   1149篇
  2010年   239篇
  2008年   646篇
  2007年   818篇
  2006年   692篇
  2005年   747篇
  2004年   788篇
  2003年   723篇
  2002年   699篇
  2001年   1211篇
  2000年   1178篇
  1999年   768篇
  1992年   754篇
  1991年   540篇
  1990年   601篇
  1989年   573篇
  1988年   555篇
  1987年   579篇
  1986年   622篇
  1985年   780篇
  1984年   552篇
  1983年   475篇
  1982年   436篇
  1981年   498篇
  1980年   555篇
  1979年   1258篇
  1978年   1003篇
  1977年   983篇
  1976年   783篇
  1975年   788篇
  1974年   1172篇
  1973年   979篇
  1972年   1007篇
  1971年   1152篇
  1970年   1572篇
  1969年   1280篇
  1968年   1116篇
  1967年   1154篇
  1966年   1045篇
  1965年   794篇
  1964年   251篇
  1959年   430篇
  1958年   756篇
  1957年   509篇
  1956年   415篇
  1955年   395篇
  1954年   417篇
  1948年   260篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The molecular mechanisms of aging are most fully understood for the budding yeast Saccharomyces cerevisiae. Recent advances in our understanding of aging in this organism have enabled researchers to answer some fundamental questions about the aging process. Is aging due to a multitude of 'mechanisms' or can there be a key few? Can we design single-gene mutations that will prolong life? Can we prolong life whilst maintaining health and fecundity? The various contributing factors to yeast longevity, uncovered thus far, fall into three classes: DNA metabolism, heterochromatin, and metabolic activity. However, these separate classes may actually represent different aspects of the same aging mechanism based on genome stability. This review examines the recent advances in our understanding of yeast aging and discusses their relevance, if any, to the human condition.  相似文献   
992.
The Pendred syndrome gene encodes a chloride-iodide transport protein   总被引:24,自引:0,他引:24  
Pendred syndrome is the most common form of syndromic deafness and characterized by congenital sensorineural hearing loss and goitre. This disorder was mapped to chromosome 7 and the gene causing Pendred syndrome (PDS) was subsequently identified by positional cloning. PDS encodes a putative transmembrane protein designated pendrin. Pendrin is closely related to a family of sulfate transport proteins that includes the rat sulfate-anion transporter (encoded by Sat-1; 29% amino acid sequence identity), the human diastrophic dysplasia sulfate transporter (encoded by DTD; 32%) and the human sulfate transporter 'downregulated in adenoma' (encoded by DRA; 45%). On the basis of this homology and the presence of a slightly modified sulfate-transporter signature sequence comprising its putative second transmembrane domain, pendrin has been proposed to function as a sulfate transporter. We were unable to detect evidence of sulfate transport following the expression of pendrin in Xenopus laevis oocytes by microinjection of PDS cRNA or in Sf9 cells following infection with PDS-recombinant baculovirus. The rates of transport for iodide and chloride were significantly increased following the expression of pendrin in both cell systems. Our results demonstrate that pendrin functions as a transporter of chloride and iodide, but not sulfate, and may provide insight into thyroid physiology and the pathophysiology of Pendred syndrome.  相似文献   
993.
Caenorhabditis elegans is the first animal whose genomic sequence has been determined. One of the new possibilities in post-sequence genetics is the analysis of complete gene families at once. We studied the family of heterotrimeric G proteins. C. elegans has 20 Galpha, 2 Gbeta and 2 Ggamma genes. There is 1 homologue of each of the 4 mammalian classes of Galpha genes, G(i)/G(o)alpha, G(s)alpha , G(q)alpha and G12alpha, and there are 16 new alpha genes. Although the conserved Galpha subunits are expressed in many neurons and muscle cells, GFP fusions indicate that 14 new Galpha genes are expressed almost exclusively in a small subset of the chemosensory neurons of C. elegans. We generated loss-of-function alleles using target-selected gene inactivation. None of the amphid-expressed genes are essential for viability, and only four show any detectable phenotype (chemotaxis defects), suggesting extensive functional redundancy. On the basis of functional analysis, the 20 genes encoding Galpha proteins can be divided into two groups: those that encode subunits affecting muscle activity (homologues of G(i)/G(o)alpha, G(s)alpha and G(q)), and those (14 new genes) that encode proteins most likely involved in perception.  相似文献   
994.
995.
The Ca2+ ionophore ionomycin induced cytosolic [Ca2+]i elevation as well as strong activation of Cl efflux in mouse mammary epithelial cell lines expressing wild-type or mutated (deletion of phenylalaline 508) cystic fibrosis transmembrane conductance regulator (CFTR) or vector. Ionomycin-induced Cl efflux was abolished by the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, whereas both activators and inhibitors of phospholipase A2 had no effect, indicating the involvement of Ca2+-dependent Cl- channels. Stimulation of arachidonic acid release by ionomycin and phorbol ester was not significantly different between wild-type or mutated cell lines, whereas vector-transfected cells exhibited a significant higher release, which was shown to be due to larger amount of immunoreactive cytosolic phospholipase A2. These results indicate that phospholipase A2 activity of C127 cells was not influenced by the presence of wild-type or mutated CFTR. Received 27 April 1999; received after revision 11 June 1999; accepted 23 July 1999  相似文献   
996.
Genomic instability in Gadd45a-deficient mice.   总被引:19,自引:0,他引:19  
Gadd45a-null mice generated by gene targeting exhibited several of the phenotypes characteristic of p53-deficient mice, including genomic instability, increased radiation carcinogenesis and a low frequency of exencephaly. Genomic instability was exemplified by aneuploidy, chromosome aberrations, gene amplification and centrosome amplification, and was accompanied by abnormalities in mitosis, cytokinesis and growth control. Unequal segregation of chromosomes due to multiple spindle poles during mitosis occurred in several Gadd45a -/- cell lineages and may contribute to the aneuploidy. Our results indicate that Gadd45a is one component of the p53 pathway that contributes to the maintenance of genomic stability.  相似文献   
997.
998.
Engineering a mouse balancer chromosome.   总被引:15,自引:0,他引:15  
Balancer chromosomes are genetic reagents that are used in Drosophila melanogaster for stock maintenance and mutagenesis screens. Despite their utility, balancer chromosomes are rarely used in mice because they are difficult to generate using conventional methods. Here we describe the engineering of a mouse balancer chromosome with the Cre-loxP recombination system. The chromosome features a 24-centiMorgan (cM) inversion between Trp53 (also known as p53) and Wnt3 on mouse chromosome 11 that is recessive lethal and dominantly marked with a K14-Agouti transgene. When allelic to a wild-type chromosome, the inversion suppresses crossing over in the inversion interval, accompanied by elevated recombination in the flanking regions. The inversion functions as a balancer chromosome because it can be used to maintain a lethal mutation in the inversion interval as a self-sustaining trans-heterozygous stock. This strategy can be used to generate similar genetic reagents throughout the mouse genome. Engineering of visibly marked inversions and deficiencies is an important step toward functional analyses of the mouse genome and will facilitate large-scale mutagenesis programs.  相似文献   
999.
Altered growth and function of synoviocytes, the intimal cells which line joint cavities and tendon sheaths, occur in a number of skeletal diseases. Hyperplasia of synoviocytes is found in both rheumatoid arthritis and osteoarthritis, despite differences in the underlying aetiologies of the two disorders. We have studied the autosomal recessive disorder camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP; MIM 208250) to identify biological pathways that lead to synoviocyte hyperplasia, the principal pathological feature of this syndrome. Using a positional-candidate approach, we identified mutations in a gene (CACP) encoding a secreted proteoglycan as the cause of CACP. The CACP protein, which has previously been identified as both 'megakaryocyte stimulating factor precursor' and 'superficial zone protein', contains domains that have homology to somatomedin B, heparin-binding proteins, mucins and haemopexins. In addition to expression in joint synovium and cartilage, CACP is expressed in non-skeletal tissues including liver and pericardium. The similarity of CACP sequence to that of other protein families and the expression of CACP in non-skeletal tissues suggest it may have diverse biological activities.  相似文献   
1000.
The metabolic pathways that produce 11-cis retinal are important for vision because this retinoid is the chromophore residing in rhodopsin and the cone opsins. The all-trans retinal that is generated after cone and rod photopigments absorb photons of light is recycled back to 11-cis retinal by the retinal pigment epithelium and Müller cells of the retina. Several of the enzymes involved have recently been purified and molecularly cloned; here we focus on 11-cis retinol dehydrogenase (encoded by the gene RDH5; chromosome 12q13-14; ref. 4), the first cloned enzyme in this pathway. This microsomal enzyme is abundant in the retinal pigment epithelium, where it has been proposed to catalyse the conversion of 11-cis retinol to 11-cis retinal. We evaluated patients with hereditary retinal diseases featuring subretinal spots (retinitis punctata albescens and fundus albipunctatus) and patients with typical dominant or recessive retinitis pigmentosa for mutations in RDH5. Mutations were found only in two unrelated patients, both with fundus albipunctatus; they segregated with disease in the respective families. Recombinant mutant 11-cis retinol dehydrogenases had reduced activity compared with recombinant enzyme with wild-type sequence. Our results suggest that mutant alleles in RDH5 are a cause of fundus albipunctatus, a rare form of stationary night blindness characterized by a delay in the regeneration of cone and rod photopigments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号