首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11962篇
  免费   46篇
  国内免费   52篇
系统科学   83篇
丛书文集   46篇
教育与普及   53篇
理论与方法论   77篇
现状及发展   4322篇
研究方法   523篇
综合类   6687篇
自然研究   269篇
  2013年   96篇
  2012年   194篇
  2011年   501篇
  2010年   93篇
  2009年   90篇
  2008年   208篇
  2007年   231篇
  2006年   253篇
  2005年   250篇
  2004年   281篇
  2003年   229篇
  2002年   236篇
  2001年   320篇
  2000年   350篇
  1999年   254篇
  1992年   222篇
  1991年   168篇
  1990年   178篇
  1989年   193篇
  1988年   190篇
  1987年   197篇
  1986年   178篇
  1985年   251篇
  1984年   179篇
  1983年   140篇
  1982年   113篇
  1981年   117篇
  1980年   137篇
  1979年   331篇
  1978年   256篇
  1977年   241篇
  1976年   224篇
  1975年   238篇
  1974年   306篇
  1973年   278篇
  1972年   236篇
  1971年   337篇
  1970年   474篇
  1969年   327篇
  1968年   312篇
  1967年   319篇
  1966年   349篇
  1965年   223篇
  1964年   98篇
  1959年   108篇
  1958年   209篇
  1957年   118篇
  1956年   130篇
  1955年   101篇
  1948年   127篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
Köksal M  Jin Y  Coates RM  Croteau R  Christianson DW 《Nature》2011,469(7328):116-120
With more than 55,000 members identified so far in all forms of life, the family of terpene or terpenoid natural products represents the epitome of molecular biodiversity. A well-known and important member of this family is the polycyclic diterpenoid Taxol (paclitaxel), which promotes tubulin polymerization and shows remarkable efficacy in cancer chemotherapy. The first committed step of Taxol biosynthesis in the Pacific yew (Taxus brevifolia) is the cyclization of the linear isoprenoid substrate geranylgeranyl diphosphate (GGPP) to form taxa-4(5),11(12)diene, which is catalysed by taxadiene synthase. The full-length form of this diterpene cyclase contains 862 residues, but a roughly 80-residue amino-terminal transit sequence is cleaved on maturation in plastids. We now report the X-ray crystal structure of a truncation variant lacking the transit sequence and an additional 27 residues at the N terminus, hereafter designated TXS. Specifically, we have determined structures of TXS complexed with 13-aza-13,14-dihydrocopalyl diphosphate (1.82?? resolution) and 2-fluorogeranylgeranyl diphosphate (2.25?? resolution). The TXS structure reveals a modular assembly of three α-helical domains. The carboxy-terminal catalytic domain is a class?I terpenoid cyclase, which binds and activates substrate GGPP with a three-metal ion cluster. The N-terminal domain and a third 'insertion' domain together adopt the fold of a vestigial class?II terpenoid cyclase. A class?II cyclase activates the isoprenoid substrate by protonation instead of ionization, and the TXS structure reveals a definitive connection between the two distinct cyclase classes in the evolution of terpenoid biosynthesis.  相似文献   
172.
173.
174.
Oxysterols direct immune cell migration via EBI2   总被引:1,自引:0,他引:1  
Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) is a G-protein-coupled receptor that is required for humoral immune responses; polymorphisms in the receptor have been associated with inflammatory autoimmune diseases. The natural ligand for EBI2 has been unknown. Here we describe the identification of 7α,25-dihydroxycholesterol (also called 7α,25-OHC or 5-cholesten-3β,7α,25-triol) as a potent and selective agonist of EBI2. Functional activation of human EBI2 by 7α,25-OHC and closely related oxysterols was verified by monitoring second messenger readouts and saturable, high-affinity radioligand binding. Furthermore, we find that 7α,25-OHC and closely related oxysterols act as chemoattractants for immune cells expressing EBI2 by directing cell migration in vitro and in vivo. A critical enzyme required for the generation of 7α,25-OHC is cholesterol 25-hydroxylase (CH25H). Similar to EBI2 receptor knockout mice, mice deficient in CH25H fail to position activated B cells within the spleen to the outer follicle and mount a reduced plasma cell response after an immune challenge. This demonstrates that CH25H generates EBI2 biological activity in vivo and indicates that the EBI2-oxysterol signalling pathway has an important role in the adaptive immune response.  相似文献   
175.
S-nitrosylation of NADPH oxidase regulates cell death in plant immunity   总被引:2,自引:0,他引:2  
Yun BW  Feechan A  Yin M  Saidi NB  Le Bihan T  Yu M  Moore JW  Kang JG  Kwon E  Spoel SH  Pallas JA  Loake GJ 《Nature》2011,478(7368):264-268
Changes in redox status are a conspicuous feature of immune responses in a variety of eukaryotes, but the associated signalling mechanisms are not well understood. In plants, attempted microbial infection triggers the rapid synthesis of nitric oxide and a parallel accumulation of reactive oxygen intermediates, the latter generated by NADPH oxidases related to those responsible for the pathogen-activated respiratory burst in phagocytes. Both nitric oxide and reactive oxygen intermediates have been implicated in controlling the hypersensitive response, a programmed execution of plant cells at sites of attempted infection. However, the molecular mechanisms that underpin their function and coordinate their synthesis are unknown. Here we show genetic evidence that increases in cysteine thiols modified using nitric oxide, termed S-nitrosothiols, facilitate the hypersensitive response in the absence of the cell death agonist salicylic acid and the synthesis of reactive oxygen intermediates. Surprisingly, when concentrations of S-nitrosothiols were high, nitric oxide function also governed a negative feedback loop limiting the hypersensitive response, mediated by S-nitrosylation of the NADPH oxidase, AtRBOHD, at Cys 890, abolishing its ability to synthesize reactive oxygen intermediates. Accordingly, mutation of Cys 890 compromised S-nitrosothiol-mediated control of AtRBOHD activity, perturbing the magnitude of cell death development. This cysteine is evolutionarily conserved and specifically S-nitrosylated in both human and fly NADPH oxidase, suggesting that this mechanism may govern immune responses in both plants and animals.  相似文献   
176.
177.
The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a hexagonal, two-dimensional crystal of carbon atoms. Single-atom-thick graphene sheets can now be produced by chemical vapour deposition on scales of up to metres, making their polycrystallinity almost unavoidable. Theoretically, graphene grain boundaries are predicted to have distinct electronic, magnetic, chemical and mechanical properties that strongly depend on their atomic arrangement. Yet because of the five-order-of-magnitude size difference between grains and the atoms at grain boundaries, few experiments have fully explored the graphene grain structure. Here we use a combination of old and new transmission electron microscopy techniques to bridge these length scales. Using atomic-resolution imaging, we determine the location and identity of every atom at a grain boundary and find that different grains stitch together predominantly through pentagon-heptagon pairs. Rather than individually imaging the several billion atoms in each grain, we use diffraction-filtered imaging to rapidly map the location, orientation and shape of several hundred grains and boundaries, where only a handful have been previously reported. The resulting images reveal an unexpectedly small and intricate patchwork of grains connected by tilt boundaries. By correlating grain imaging with scanning probe and transport measurements, we show that these grain boundaries severely weaken the mechanical strength of graphene membranes but do not as drastically alter their electrical properties. These techniques open a new window for studies on the structure, properties and control of grains and grain boundaries in graphene and other two-dimensional materials.  相似文献   
178.
179.
Templates are widely used to arrange molecular components so they can be covalently linked into complex molecules that are not readily accessible by classical synthetic methods. Nature uses sophisticated templates such as the ribosome, whereas chemists use simple ions or small molecules. But as we tackle the synthesis of larger targets, we require larger templates-which themselves become synthetically challenging. Here we show that Vernier complexes can solve this problem: if the number of binding sites on the template, n(T), is not a multiple of the number of binding sites on the molecular building blocks, n(B), then small templates can direct the assembly of relatively large Vernier complexes where the number of binding sites in the product, n(P), is the lowest common multiple of n(B) and n(T) (refs 8, 9). We illustrate the value of this concept for the covalent synthesis of challenging targets by using a simple six-site template to direct the synthesis of a 12-porphyrin nano-ring with a diameter of 4.7?nm, thus establishing Vernier templating as a powerful new strategy for the synthesis of large monodisperse macromolecules.  相似文献   
180.
Gill BC  Lyons TW  Young SA  Kump LR  Knoll AH  Saltzman MR 《Nature》2011,469(7328):80-83
Widespread anoxia in the ocean is frequently invoked as a primary driver of mass extinction as well as a long-term inhibitor of evolutionary radiation on early Earth. In recent biogeochemical studies it has been hypothesized that oxygen deficiency was widespread in subsurface water masses of later Cambrian oceans, possibly influencing evolutionary events during this time. Physical evidence of widespread anoxia in Cambrian oceans has remained elusive and thus its potential relationship to the palaeontological record remains largely unexplored. Here we present sulphur isotope records from six globally distributed stratigraphic sections of later Cambrian marine rocks (about 499 million years old). We find a positive sulphur isotope excursion in phase with the Steptoean Positive Carbon Isotope Excursion (SPICE), a large and rapid excursion in the marine carbon isotope record, which is thought to be indicative of a global carbon cycle perturbation. Numerical box modelling of the paired carbon sulphur isotope data indicates that these isotope shifts reflect transient increases in the burial of organic carbon and pyrite sulphur in sediments deposited under large-scale anoxic and sulphidic (euxinic) conditions. Independently, molybdenum abundances in a coeval black shale point convincingly to the transient spread of anoxia. These results identify the SPICE interval as the best characterized ocean anoxic event in the pre-Mesozoic ocean and an extreme example of oxygen deficiency in the later Cambrian ocean. Thus, a redox structure similar to those in Proterozoic oceans may have persisted or returned in the oceans of the early Phanerozoic eon. Indeed, the environmental challenges presented by widespread anoxia may have been a prevalent if not dominant influence on animal evolution in Cambrian oceans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号