首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   2篇
  国内免费   3篇
系统科学   1篇
理论与方法论   3篇
现状及发展   14篇
研究方法   20篇
综合类   87篇
自然研究   8篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   11篇
  2011年   21篇
  2010年   4篇
  2009年   1篇
  2008年   14篇
  2007年   6篇
  2006年   9篇
  2005年   9篇
  2004年   11篇
  2003年   15篇
  2002年   11篇
  2001年   5篇
  2000年   2篇
  1994年   1篇
  1970年   1篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
71.
The applicability of Ce and Y as promising candidate elements to form irreversible traps in weld metal was investigated by thermal desorption spectroscopy (TDS) with gas chromatography (GC).The precise nature of the precipitate particles newly formed in the weld metal by the addition of Ce and Y to a certain alloy system was characterized.Moreover,the hydrogen trapping efficiency expressed as the reduction of the diffusible hydrogen in the weld metal was analyzed.The results showed that the addition of Ce and/or Y to this alloy system led to the formation of a mixed type of (Ce,Ti)-based oxide,(Y,Ni)-based carbide,or (Ce,Y,Ti)-based oxide particles.Because of the high activation energy of the mixed type of particles (≥ 150 kJ/mol),the trapping efficiency for hydrogen was considered to be sufficiently high to effectively reduce the diffusible hydrogen content.  相似文献   
72.
Highly stretchable and tough hydrogels   总被引:1,自引:0,他引:1  
JY Sun  X Zhao  WR Illeperuma  O Chaudhuri  KH Oh  DJ Mooney  JJ Vlassak  Z Suo 《Nature》2012,489(7414):133-136
Hydrogels are used as scaffolds for tissue engineering, vehicles for drug delivery, actuators for optics and fluidics, and model extracellular matrices for biological studies. The scope of hydrogel applications, however, is often severely limited by their mechanical behaviour. Most hydrogels do not exhibit high stretchability; for example, an alginate hydrogel ruptures when stretched to about 1.2 times its original length. Some synthetic elastic hydrogels have achieved stretches in the range 10-20, but these values are markedly reduced in samples containing notches. Most hydrogels are brittle, with fracture energies of about 10?J?m(-2) (ref. 8), as compared with ~1,000?J?m(-2) for cartilage and ~10,000?J?m(-2) for natural rubbers. Intense efforts are devoted to synthesizing hydrogels with improved mechanical properties; certain synthetic gels have reached fracture energies of 100-1,000?J?m(-2) (refs 11, 14, 17). Here we report the synthesis of hydrogels from polymers forming ionically and covalently crosslinked networks. Although such gels contain ~90% water, they can be stretched beyond 20 times their initial length, and have fracture energies of ~9,000?J?m(-2). Even for samples containing notches, a stretch of 17 is demonstrated. We attribute the gels' toughness to the synergy of two mechanisms: crack bridging by the network of covalent crosslinks, and hysteresis by unzipping the network of ionic crosslinks. Furthermore, the network of covalent crosslinks preserves the memory of the initial state, so that much of the large deformation is removed on unloading. The unzipped ionic crosslinks cause internal damage, which heals by re-zipping. These gels may serve as model systems to explore mechanisms of deformation and energy dissipation, and expand the scope of hydrogel applications.  相似文献   
73.
The composite human microbiome of Western populations has probably changed over the past century, brought on by new environmental triggers that often have a negative impact on human health. Here we show that consumption of a diet high in saturated (milk-derived) fat, but not polyunsaturated (safflower oil) fat, changes the conditions for microbial assemblage and promotes the expansion of a low-abundance, sulphite-reducing pathobiont, Bilophila wadsworthia. This was associated with a pro-inflammatory T helper type 1 (T(H)1) immune response and increased incidence of colitis in genetically susceptible Il10(?/?), but not wild-type mice. These effects are mediated by milk-derived-fat-promoted taurine conjugation of hepatic bile acids, which increases the availability of organic sulphur used by sulphite-reducing microorganisms like B. wadsworthia. When mice were fed a low-fat diet supplemented with taurocholic acid, but not with glycocholic acid, for example, a bloom of B. wadsworthia and development of colitis were observed in Il10(?/?) mice. Together these data show that dietary fats, by promoting changes in host bile acid composition, can markedly alter conditions for gut microbial assemblage, resulting in dysbiosis that can perturb immune homeostasis. The data provide a plausible mechanistic basis by which Western-type diets high in certain saturated fats might increase the prevalence of complex immune-mediated diseases like inflammatory bowel disease in genetically susceptible hosts.  相似文献   
74.
75.
Russo E 《Nature》2002,416(6882):4-5
  相似文献   
76.
Russo E 《Nature》2003,421(6921):456-457
  相似文献   
77.
Russo E 《Nature》2003,422(6929):354-355
  相似文献   
78.
79.
80.
The structure of the protein universe and genome evolution   总被引:18,自引:0,他引:18  
Koonin EV  Wolf YI  Karev GP 《Nature》2002,420(6912):218-223
Despite the practically unlimited number of possible protein sequences, the number of basic shapes in which proteins fold seems not only to be finite, but also to be relatively small, with probably no more than 10,000 folds in existence. Moreover, the distribution of proteins among these folds is highly non-homogeneous -- some folds and superfamilies are extremely abundant, but most are rare. Protein folds and families encoded in diverse genomes show similar size distributions with notable mathematical properties, which also extend to the number of connections between domains in multidomain proteins. All these distributions follow asymptotic power laws, such as have been identified in a wide variety of biological and physical systems, and which are typically associated with scale-free networks. These findings suggest that genome evolution is driven by extremely general mechanisms based on the preferential attachment principle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号