首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17766篇
  免费   39篇
  国内免费   55篇
系统科学   136篇
丛书文集   204篇
教育与普及   37篇
理论与方法论   78篇
现状及发展   7522篇
研究方法   867篇
综合类   8697篇
自然研究   319篇
  2013年   116篇
  2012年   290篇
  2011年   602篇
  2010年   119篇
  2008年   373篇
  2007年   348篇
  2006年   362篇
  2005年   372篇
  2004年   394篇
  2003年   323篇
  2002年   298篇
  2001年   527篇
  2000年   503篇
  1999年   356篇
  1992年   336篇
  1991年   240篇
  1990年   256篇
  1989年   247篇
  1988年   245篇
  1987年   251篇
  1986年   243篇
  1985年   338篇
  1984年   281篇
  1983年   182篇
  1982年   200篇
  1981年   175篇
  1980年   220篇
  1979年   505篇
  1978年   359篇
  1977年   372篇
  1976年   327篇
  1975年   369篇
  1974年   475篇
  1973年   439篇
  1972年   445篇
  1971年   510篇
  1970年   650篇
  1969年   545篇
  1968年   563篇
  1967年   512篇
  1966年   473篇
  1965年   349篇
  1964年   112篇
  1959年   191篇
  1958年   340篇
  1957年   232篇
  1956年   222篇
  1955年   179篇
  1954年   209篇
  1948年   165篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
801.
Aneuploidy, an abnormal chromosome number, has been recognized as a hallmark of human cancer for nearly a century; however, the mechanisms responsible for this abnormality have remained elusive. Here we report the identification of mutations in hCDC4 (also known as Fbw7 or Archipelago) in both human colorectal cancers and their precursor lesions. We show that genetic inactivation of hCDC4, by means of targeted disruption of the gene in karyotypically stable colorectal cancer cells, results in a striking phenotype associated with micronuclei and chromosomal instability. This phenotype can be traced to a defect in the execution of metaphase and subsequent transmission of chromosomes, and is dependent on cyclin E--a protein that is regulated by hCDC4 (refs 2-4). Our data suggest that chromosomal instability is caused by specific genetic alterations in a large fraction of human cancers and can occur before malignant conversion.  相似文献   
802.
Ilani S  Martin J  Teitelbaum E  Smet JH  Mahalu D  Umansky V  Yacoby A 《Nature》2004,427(6972):328-332
The quantum Hall effect arises from the interplay between localized and extended states that form when electrons, confined to two dimensions, are subject to a perpendicular magnetic field. The effect involves exact quantization of all the electronic transport properties owing to particle localization. In the conventional theory of the quantum Hall effect, strong-field localization is associated with a single-particle drift motion of electrons along contours of constant disorder potential. Transport experiments that probe the extended states in the transition regions between quantum Hall phases have been used to test both the theory and its implications for quantum Hall phase transitions. Although several experiments on highly disordered samples have affirmed the validity of the single-particle picture, other experiments and some recent theories have found deviations from the predicted universal behaviour. Here we use a scanning single-electron transistor to probe the individual localized states, which we find to be strikingly different from the predictions of single-particle theory. The states are mainly determined by Coulomb interactions, and appear only when quantization of kinetic energy limits the screening ability of electrons. We conclude that the quantum Hall effect has a greater diversity of regimes and phase transitions than predicted by the single-particle framework. Our experiments suggest a unified picture of localization in which the single-particle model is valid only in the limit of strong disorder.  相似文献   
803.
804.
An acylphosphatase (AcPase) overexpression study was carried out on SH-SY5Y neuroblastoma cells, using a green fluorescent fusion protein (AcP-GFP), with GFP acting as a reporter protein. The cellular proliferation rate was significantly reduced by overexpression of AcPase by a factor of ten. In contrast, clones transfected with two inactive AcPase mutants showed a growth rate comparable to control cells. This suggests that AcPase catalyzes the proliferative down-regulation. AcPase-overexpressing clones showed a physiological mortality rate as assessed by an MTT reduction test and by evaluation of necrotic markers. DNA fragmentation analysis and assays of caspase-3 and poly (ADP-ribose) polymerase (PARP)-active fragments showed no evidence of any apoptotic pattern. AcPase overexpression led to a marked increase in PARP activity as well as Bcl-2 content; these are commonly up-regulated during differentiative processes in neuronal cells. In fact, the typical differentiation marker, growth-associated-protein 43, was significantly up-regulated. Microscopic observations also showed a clear increase in the differentiative phenotype in AcPase-overexpressing cells. Our results clearly show that AcPase plays a primary causative role in neuronal differentiation.Received 3 May 2004; accepted 25 May 2004  相似文献   
805.
Aldose reductase is involved in the polyol pathway, catalyzing the reduction of glucose to sorbitol. However, due to pronounced binding site adaptations, the enzyme can operate on a broad palette of structurally diverse substrates ranging from small aliphatic and aromatic aldehydes up to steroid-type ligands. A comparative analysis of the presently accessible crystal structures of aldose reductase complexes reveals four binding-competent protein conformations. Additional relevant conformers are detected through molecular dynamics simulations. They indicate an equilibrium of several conformers which is shifted towards the binding-competent geometries upon ligand binding. Such a manifold system with several alternative binding site conformers requires some tailored concepts in virtual screening. We followed two strategies, both successfully suggesting new micromolar inhibitors. In a first attempt, we concentrated on one preferred conformer and performed a virtual screening, assuming that the binding pocket of aldose reductase adopts only this conformation. In a second approach, we followed a ligand superpositioning method. Ligands were extracted in their bound conformations from three different crystal structures, all accommodating the ligands with different active site conformations. After merging these ligands into one supermolecule, mutual alignments were computed, taking candidate ligands from a screening database. The latter strategy also retrieved several structurally new inhibitors of micromolar potency.  相似文献   
806.
The present study reports for the first time the involvement of an antimicrobial peptide in the defense reactions of a shrimp infected by a pathogenic Vibrio, Vibrio penaeicida. New members of the penaeidin family were characterized in the shrimp Litopenaeus stylirostris by RT-PCR and RACE-PCR from hemocyte total RNAs, and by mass spectrometry detection and immunolocalization of mature peptides in shrimp hemocytes. In infected shrimps, bacteria and penaeidin distribution colocalized in the gills and the lymphoid organ that represented the main infected sites. Moreover, the shrimp immune response to infection involved massive hemocyte recruitment to infection sites where released penaeidin may participate in the isolation and elimination of the bacteria, We show that the ability of the shrimps to circumvent shrimp infections is closely related to a recovery phase based on the hematopoietic process.Received 25 November 2003; received after revision 8 January 2004; accepted 21 January 2004  相似文献   
807.
The presence and functional role of the swelling-activated Cl- current (ICl(swell)) in rabbit cardiac Purkinje cells was examined using patch-clamp methodology. Extracellular hypotonicity (210 or 135 mOsm) activated an outwardly rectifying, time-independent current with a reversal potential close to the calculated Cl- equilibrium potential (ECl). The magnitude of this current was related to tonicity of the superfusate. The current was blocked by 0.5 mM 4,4-diisothiocyanostilbene-2,2-disulfonic acid (DIDS). These features are comparable to those of ICl(swell) found in sinoatrial nodal, atrial, and ventricular myocytes. ICl(swell) activation at 210 and 135 mOsm depolarized the resting membrane potential with 6 and 10 mV and shortened the action potential by 18 and 33%, respectively. DIDS partially reversed ICl(swell)-induced action potential changes. We conclude that ICl(swell) is present in Purkinje cells and its activation leads to action potential shortening and resting membrane potential depolarization, both of which can promote the development of reentrant arrhythmias.Received 20 January 2004; received after revision 17 February 2004; accepted 25 February 2004  相似文献   
808.
The molecular mechanisms of congenital hypofibrinogenaemia   总被引:7,自引:0,他引:7  
Congenital hypofibrinogenaemia is characterized by abnormally low levels of fibrinogen and is usually caused by heterozygous mutations in the fibrinogen chain genes (, and ). However, it does not usually result in a clinically significant condition unless inherited in a homozygous or compound heterozygous state, where it results in a severe bleeding disorder, afibrinogenaemia. Various protein and expression studies have improved our understanding of how mutations causing hypo- and afibrinogenaemia affect secretion of the mature fibrinogen molecule from the hepatocyte. Some mutations can perturb chain assembly as in the 153 Cys Arg case, while others such as the B Leu Arg and the B414 Gly Ser mutations allow intracellular hexamer assembly but inhibit protein secretion. An interesting group of mutations, such as 284 Gly Arg and 375 Arg Trp, not only cause hypofibrinogenaemia but are also associated with liver disease. The nonexpression of these variant chains in plasma fibrinogen is due to retention in the endoplasmic reticulum, which in turn leads to hypofibrinogenaemia.Received 17 December 2003; received after revision 19 January 2004; accepted 21 January 2004  相似文献   
809.
810.
Sex determination and gametogenesis are key processes in human reproduction, and any defect can lead to infertility. We describe here the molecular mechanisms of male sex determination and testis formation; defects in sex determination lead to a female phenotype despite the presence of a Y chromosome, more rarely to a male phenotype with XX chromosomes, or to intersex phenotypes. Interestingly, these phenotypes are often associated with other developmental malformations. In testis, spermatozoa are produced from renewable stem cells in a complex differentiation process called spermatogenesis. Gene expression during spermatogenesis differs to a surprising degree from gene expression in somatic cells, and we discuss here mechanistic differences and their effect on the differentiation process and male fertility.Received 23 January 2004; received after revision 30 March 2004; accepted 6 April 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号