首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   499篇
  免费   1篇
  国内免费   2篇
系统科学   3篇
教育与普及   1篇
理论与方法论   3篇
现状及发展   82篇
研究方法   95篇
综合类   303篇
自然研究   15篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   11篇
  2012年   41篇
  2011年   69篇
  2010年   11篇
  2008年   34篇
  2007年   34篇
  2006年   39篇
  2005年   30篇
  2004年   18篇
  2003年   25篇
  2002年   22篇
  2001年   9篇
  2000年   5篇
  1999年   2篇
  1992年   7篇
  1991年   6篇
  1990年   2篇
  1989年   3篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1978年   2篇
  1977年   6篇
  1976年   7篇
  1975年   11篇
  1974年   8篇
  1973年   5篇
  1972年   6篇
  1971年   7篇
  1970年   3篇
  1969年   5篇
  1968年   10篇
  1967年   9篇
  1966年   7篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1955年   1篇
  1946年   1篇
排序方式: 共有502条查询结果,搜索用时 15 毫秒
111.
112.
Most human tumours have genetic mutations in their Rb and p53 pathways, but retinoblastoma is thought to be an exception. Studies suggest that retinoblastomas, which initiate with mutations in the gene retinoblastoma 1 (RB1), bypass the p53 pathway because they arise from intrinsically death-resistant cells during retinal development. In contrast to this prevailing theory, here we show that the tumour surveillance pathway mediated by Arf, MDM2, MDMX and p53 is activated after loss of RB1 during retinogenesis. RB1-deficient retinoblasts undergo p53-mediated apoptosis and exit the cell cycle. Subsequently, amplification of the MDMX gene and increased expression of MDMX protein are strongly selected for during tumour progression as a mechanism to suppress the p53 response in RB1-deficient retinal cells. Our data provide evidence that the p53 pathway is inactivated in retinoblastoma and that this cancer does not originate from intrinsically death-resistant cells as previously thought. In addition, they support the idea that MDMX is a specific chemotherapeutic target for treating retinoblastoma.  相似文献   
113.
Cyclic GMP is involved in the excitation of invertebrate photoreceptors   总被引:13,自引:0,他引:13  
E C Johnson  P R Robinson  J E Lisman 《Nature》1986,324(6096):468-470
The hyperpolarizing receptor potential in vertebrate rod photoreceptors appears to be mediated by the second messenger, cyclic GMP. Injection of cGMP into rods or application of cGMP to inside-out membrane patches activates a conductance resembling that produced by light. Light produces a rapid reduction of cGMP in living rods, leading to closure of sodium channels and membrane hyperpolarization. In most invertebrate photoreceptors the response to light is depolarizing. We have investigated whether cGMP is involved in controlling the increase in sodium conductance that underlies this depolarization. We show here that injection of cGMP into Limulus photoreceptors produces a depolarization that mimics the receptor potential. We also show that the cGMP concentration of the squid retina increases rapidly during exposure to light. These results support the hypothesis that cGMP mediates the light-induced depolarization in invertebrate photoreceptors and suggests that vertebrate and invertebrate phototransduction may be more similar than previously thought.  相似文献   
114.
Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation   总被引:2,自引:0,他引:2  
Lee CY  Robinson KJ  Doe CQ 《Nature》2006,439(7076):594-598
How a cell chooses to proliferate or to differentiate is an important issue in stem cell and cancer biology. Drosophila neuroblasts undergo self-renewal with every cell division, producing another neuroblast and a differentiating daughter cell, but the mechanisms controlling the self-renewal/differentiation decision are poorly understood. Here we tested whether cell polarity genes, known to regulate embryonic neuroblast asymmetric cell division, also regulate neuroblast self-renewal. Clonal analysis in larval brains showed that pins mutant neuroblasts rapidly fail to self-renew, whereas lethal giant larvae (lgl) mutant neuroblasts generate multiple neuroblasts. Notably, lgl pins double mutant neuroblasts all divide symmetrically to self-renew, filling the brain with neuroblasts at the expense of neurons. The lgl pins neuroblasts show ectopic cortical localization of atypical protein kinase C (aPKC), and a decrease in aPKC expression reduces neuroblast numbers, suggesting that aPKC promotes neuroblast self-renewal. In support of this hypothesis, neuroblast-specific overexpression of membrane-targeted aPKC, but not a kinase-dead version, induces ectopic neuroblast self-renewal. We conclude that cortical aPKC kinase activity is a potent inducer of neuroblast self-renewal.  相似文献   
115.
Microscopy is an essential technique for observation on living cells. There is currently great interest in apply scanning probe microscopy to image living biological cells in their natural environment at the nanometer scale. Scanning ion conductance microscopy is a new form of scanning probe microscopy, which enables non-contact high resolution imaging of living biological cells. Based on a scanned nanopipette in physiological buffer, the distance feedback control uses the ion current to control the distance between the pipette tip and the sample surface. However, this feedback control has difficulties over slopes on convoluted cell surfaces, which limits its resolution. In this study, we present an improved form of feedback control that removes the contribution of up to the third order slope from the ion current signal, hence providing a more accurate signal for controlling the distance. We show that this allows faster and lower noise topographic high resolution imaging.  相似文献   
116.
Q Xu  G Mellitzer  V Robinson  D G Wilkinson 《Nature》1999,399(6733):267-271
The restriction of intermingling between specific cell populations is crucial for the maintenance of organized patterns during development. A striking example is the restriction of cell mixing between segments in the insect epidermis and the vertebrate hindbrain that may enable each segment to maintain a distinct identity. In the hindbrain, this is a result of different adhesive properties of odd- and even-numbered segments (rhombomeres), but an adhesion molecule with alternating segmental expression has not been found. However, blocking experiments suggest that Eph-receptor tyrosine kinases may be required for the segmental restriction of cells. Eph receptors and their membrane-bound ligands, ephrins, are expressed in complementary rhombomeres and, by analogy with their roles in axon pathfinding, could mediate cell repulsion at boundaries. Remarkably, transmembrane ephrins can themselves transduce signals, raising the possibility that bi-directional signalling occurs between adjacent ephrin- and Eph-receptor-expressing cells. We report here that mosaic activation of Eph receptors leads to sorting of cells to boundaries in odd-numbered rhombomeres, whereas mosaic activation of ephrins results in sorting to boundaries in even-numbered rhombomeres. These data implicate Eph receptors and ephrins in the segmental restriction of cell intermingling.  相似文献   
117.
Gilbert MJ  Thornton CR  Wakley GE  Talbot NJ 《Nature》2006,440(7083):535-539
To cause diseases in plants, pathogenic microorganisms have evolved mechanisms to deliver proteins directly into plant cells, where they suppress plant defences and facilitate tissue invasion. How plant pathogenic fungi, which cause many of the world's most serious plant diseases, deliver proteins during plant infection is currently unknown. Here we report the characterization of a P-type ATPase-encoding gene, MgAPT2, in the economically important rice blast pathogen Magnaporthe grisea, which is required for exocytosis during plant infection. Targeted gene replacement showed that MgAPT2 is required for both foliar and root infection by the fungus, and for the rapid induction of host defence responses in an incompatible reaction. DeltaMgapt2 mutants are impaired in the secretion of a range of extracellular enzymes and accumulate abnormal Golgi-like cisternae. However, the loss of MgAPT2 does not significantly affect hyphal growth or sporulation, indicating that the establishment of rice blast disease involves the use of MgApt2-dependent exocytotic processes that operate during plant infection.  相似文献   
118.
119.
Complement-mediated inflammation exacerbates the tissue injury of ischaemic necrosis in heart attacks and strokes, the most common causes of death in developed countries. Large infarct size increases immediate morbidity and mortality and, in survivors of the acute event, larger non-functional scars adversely affect long-term prognosis. There is thus an important unmet medical need for new cardioprotective and neuroprotective treatments. We have previously shown that human C-reactive protein (CRP), the classical acute-phase protein that binds to ligands exposed in damaged tissue and then activates complement, increases myocardial and cerebral infarct size in rats subjected to coronary or cerebral artery ligation, respectively. Rat CRP does not activate rat complement, whereas human CRP activates both rat and human complement. Administration of human CRP to rats is thus an excellent model for the actions of endogenous human CRP. Here we report the design, synthesis and efficacy of 1,6-bis(phosphocholine)-hexane as a specific small-molecule inhibitor of CRP. Five molecules of this palindromic compound are bound by two pentameric CRP molecules, crosslinking and occluding the ligand-binding B-face of CRP and blocking its functions. Administration of 1,6-bis(phosphocholine)-hexane to rats undergoing acute myocardial infarction abrogated the increase in infarct size and cardiac dysfunction produced by injection of human CRP. Therapeutic inhibition of CRP is thus a promising new approach to cardioprotection in acute myocardial infarction, and may also provide neuroprotection in stroke. Potential wider applications include other inflammatory, infective and tissue-damaging conditions characterized by increased CRP production, in which binding of CRP to exposed ligands in damaged cells may lead to complement-mediated exacerbation of tissue injury.  相似文献   
120.
The most massive galaxies and the richest clusters are believed to have emerged from regions with the largest enhancements of mass density relative to the surrounding space. Distant radio galaxies may pinpoint the locations of the ancestors of rich clusters, because they are massive systems associated with 'overdensities' of galaxies that are bright in the Lyman-alpha line of hydrogen. A powerful technique for detecting high-redshift galaxies is to search for the characteristic 'Lyman break' feature in the galaxy colour, at wavelengths just shortwards of Lyalpha, which is due to absorption of radiation from the galaxy by the intervening intergalactic medium. Here we report multicolour imaging of the most distant candidate protocluster, TN J1338-1942 at a redshift z approximately 4.1. We find a large number of objects with the characteristic colours of galaxies at that redshift, and we show that this excess is concentrated around the targeted dominant radio galaxy. Our data therefore indicate that TN J1338-1942 is indeed the most distant cluster progenitor of a rich local cluster, and that galaxy clusters began forming when the Universe was only ten per cent of its present age.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号