首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6772篇
  免费   666篇
  国内免费   83篇
系统科学   1143篇
丛书文集   55篇
教育与普及   36篇
理论与方法论   279篇
现状及发展   874篇
研究方法   3篇
综合类   5131篇
  2024年   16篇
  2023年   19篇
  2022年   39篇
  2021年   53篇
  2020年   30篇
  2019年   21篇
  2018年   746篇
  2017年   752篇
  2016年   458篇
  2015年   80篇
  2014年   76篇
  2013年   81篇
  2012年   334篇
  2011年   1027篇
  2010年   890篇
  2009年   531篇
  2008年   597篇
  2007年   824篇
  2006年   58篇
  2005年   101篇
  2004年   166篇
  2003年   193篇
  2002年   92篇
  2001年   28篇
  2000年   24篇
  1999年   32篇
  1998年   26篇
  1997年   28篇
  1996年   25篇
  1995年   29篇
  1994年   38篇
  1993年   24篇
  1992年   29篇
  1991年   18篇
  1990年   13篇
  1989年   9篇
  1988年   7篇
  1987年   4篇
  1986年   2篇
  1967年   1篇
排序方式: 共有7521条查询结果,搜索用时 562 毫秒
21.
In October 1924, The Physical Review, a relatively minor journal at the time, published a remarkable two-part paper by John H. Van Vleck, working in virtual isolation at the University of Minnesota. Using Bohr’s correspondence principle and Einstein’s quantum theory of radiation along with advanced techniques from classical mechanics, Van Vleck showed that quantum formulae for emission, absorption, and dispersion of radiation merge with their classical counterparts in the limit of high quantum numbers. For modern readers Van Vleck’s paper is much easier to follow than the famous paper by Kramers and Heisenberg on dispersion theory, which covers similar terrain and is widely credited to have led directly to Heisenberg’s Umdeutung paper. This makes Van Vleck’s paper extremely valuable for the reconstruction of the genesis of matrix mechanics. It also makes it tempting to ask why Van Vleck did not take the next step and develop matrix mechanics himself. This paper was written as part of a joint project in the history of quantum physics of the Max Planck Institut für Wissenschaftsgeschichte and the Fritz-Haber-Institut in Berlin.  相似文献   
22.
By analyzing the observation data from Dongchuan Debris Flow Observation and Research Station and historical data from year 1965 to 1990 gotten from National Astronomical Ob-servatories/Yunnan Observatory,the responding of debris flow in Jiangjia Ravine to Solar Proton Flare is studied. The following conclusion can be drawn. Solar Proton Flare,as one of most im-portant astronomical factors,affects the activity of debris flow in Yunnan. Generally,from 1965 to1990,the more active Solar Pro-ton Flare is,the greater the probability of high frequency and large runoff of debris flow is. On the contrary,the less active Solar Pro-ton Flare is,the greater the probability of low frequency,small runoff,and low sediment transport of debris flow is.  相似文献   
23.
The unified chaotic system contains the Lorenz system and the Chen system as two dual systems at the two extremes of its parameter spectrum. This paper presents the design of bang bang controller for unified system and multitude of numerical experiments under various control parameters. Numerical experiments meet the theoretic proof perfectly and convincingly demonstrated the controller can be effectively used for unified systems with uncertainty of the equilibrium points. The method enriches the applications of chaotic control. Foundation item: Supported by the National Natural Science Foundation of China(50209012) Biography: Deng Xiao-ming (1980-), male, Master candidate, research direction: chaos control.  相似文献   
24.
混合氯化稀土催化合成DOP,DOM和DOA   总被引:1,自引:0,他引:1  
本文报道:价廉的混合氯化稀土,对合成DOP等增塑剂有明显的催化效果。产品精制简单,转化率高,有应用前景。  相似文献   
25.
We consider a risk model with a premium rate which varies with the level of free reserves. In this model, the occurrence of claims is described by a Cox process with Markov intensity process, and the influence of stochastic factors is considered by adding a diffusion process. The integro-differential equation for the ruin probability is derived by a infinitesimal method.  相似文献   
26.
In the 1687 Principia, Newton gave a solution to the direct problem (given the orbit and center of force, find the central force) for a conic-section with a focal center of force (answer: a reciprocal square force) and for a spiral orbit with a polar center of force (answer: a reciprocal cube force). He did not, however, give solutions for the two corresponding inverse problems (given the force and center of force, find the orbit). He gave a cryptic solution to the inverse problem of a reciprocal cube force, but offered no solution for the reciprocal square force. Some take this omission as an indication that Newton could not solve the reciprocal square, for, they ask, why else would he not select this important problem? Others claim that ``it is child's play' for him, as evidenced by his 1671 catalogue of quadratures (tables of integrals). The answer to that question is obscured for all who attempt to work through Newton's published solution of the reciprocal cube force because it is done in the synthetic geometric style of the 1687 Principia rather than in the analytic algebraic style that Newton employed until 1671. In response to a request from David Gregory in 1694, however, Newton produced an analytic version of the body of the proof, but one which still had a geometric conclusion. Newton's charge is to find both ``the orbit' and ``the time in orbit.' In the determination of the dependence of the time on orbital position, t(r), Newton evaluated an integral of the form ∫dx/x n to calculate a finite algebraic equation for the area swept out as a function of the radius, but he did not write out the analytic expression for time t = t(r), even though he knew that the time t is proportional to that area. In the determination of the orbit, θ (r), Newton obtained an integral of the form ∫dx/√(1−x2) for the area that is proportional to the angle θ, an integral he had shown in his 1669 On Analysis by Infinite Equations to be equal to the arcsin(x). Since the solution must therefore contain a transcendental function, he knew that a finite algebraic solution for θ=θ(r) did not exist for ``the orbit' as it had for ``the time in orbit.' In contrast to these two solutions for the inverse cube force, however, it is not possible in the inverse square solution to generate a finite algebraic expression for either ``the orbit' or ``the time in orbit.' In fact, in Lemma 28, Newton offers a demonstration that the area of an ellipse cannot be given by a finite equation. I claim that the limitation of Lemma 28 forces Newton to reject the inverse square force as an example and to choose instead the reciprocal cube force as his example in Proposition 41. (Received August 14, 2002) Published online March 26, 2003 Communicated by G. Smith  相似文献   
27.
STABILITY CRITERIA FOR A CLASS OF UNCERTAINSYSTEMS WITH TIME—DELAY   总被引:1,自引:0,他引:1  
Some stability criteria are obtained for a class of uncertain systems with time-delay usingLyapunov functional and analytic techniques. It is easy to check the criteria by making use of theboundedness of the uncertainties.  相似文献   
28.
This paper investigates the impact of a secondary market, where retailers can buy and sell excessinventories, on the supply chain. We develop a two-period model with a single manufacturer and tworetailers. At the beginning of the first period the retailers order and receive products from themanufacturer, but at the beginning of the second period, they can trade surplus products betweenthemselves in the secondary market. We investigate the impact of the correlated dependence ofretailers' demand on both the quantity effect and the allocation effect under the secondary market.Lastly,we study potential strategies for the manufacturer to increase sales with the existence of thesecondary market.  相似文献   
29.
With time-based competition and rapid technology advancements, effective manufacturingscheduling and supply chain coordination are critical to quickly respond to changing marketconditions. These problems, however, are difficult in view of inherent complexity and variousuncertainties involved. Based on a series of results by the authors, decomposition and coordination byusing Lagrangian relaxation is identified in this paper as an effective way to control complexity anduncertainty.A manufacturing scheduling problem is first formulated within the job shop context withuncertain order arrivals, processing times, due dates, and part priorities as a separable optimizationproblem. A solution methodology that combines Lagrangian relaxation, stochastic dynamicprogramming, and heuristics is developed. Method improvements to effectively solve large problemsare also highlighted. To extend manufacturing scheduling within a factory to coordinate autonomicmembers across chains of suppliers, a decentralized supply chai  相似文献   
30.
Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with the nearest neighbor classifier (NNC) is proposed. The principal component analysis (PCA) is used to reduce the dimension and extract features. Then one-against-all stratedy is used to train the SVM classifiers. At the testing stage, we propose an al-  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号