首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   0篇
  国内免费   1篇
系统科学   1篇
现状及发展   9篇
研究方法   3篇
综合类   52篇
自然研究   1篇
  2015年   1篇
  2013年   1篇
  2011年   4篇
  2010年   2篇
  2008年   6篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1987年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1977年   5篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1967年   2篇
  1958年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
21.
Tumorigenesis is a multi-step process that requires activation of oncogenes and inactivation of tumour suppressor genes. Mouse models of human cancers have recently demonstrated that continuous expression of a dominantly acting oncogene (for example, Hras, Kras and Myc) is often required for tumour maintenance; this phenotype is referred to as oncogene addiction. This concept has received clinical validation by the development of active anticancer drugs that specifically inhibit the function of oncoproteins such as BCR-ABL, c-KIT and EGFR. Identifying additional gene mutations that are required for tumour maintenance may therefore yield clinically useful targets for new cancer therapies. Although loss of p53 function is a common feature of human cancers, it is not known whether sustained inactivation of this or other tumour suppressor pathways is required for tumour maintenance. To explore this issue, we developed a Cre-loxP-based strategy to temporally control tumour suppressor gene expression in vivo. Here we show that restoring endogenous p53 expression leads to regression of autochthonous lymphomas and sarcomas in mice without affecting normal tissues. The mechanism responsible for tumour regression is dependent on the tumour type, with the main consequence of p53 restoration being apoptosis in lymphomas and suppression of cell growth with features of cellular senescence in sarcomas. These results support efforts to treat human cancers by way of pharmacological reactivation of p53.  相似文献   
22.
Glial and neuronal control of brain blood flow   总被引:1,自引:0,他引:1  
Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now recognized that neurotransmitter-mediated signalling has a key role in regulating cerebral blood flow, that much of this control is mediated by astrocytes, that oxygen modulates blood flow regulation, and that blood flow may be controlled by capillaries as well as by arterioles. These conceptual shifts in our understanding of cerebral blood flow control have important implications for the development of new therapeutic approaches.  相似文献   
23.
Summary Using a chromogenic substrate it has been shown that the endotoxin sensitive procoagulase ofLimulus lysate is not activated by dithiols. Increased turbidimetric readings in the presence of dithiols would therefore appear to be nonspecific.  相似文献   
24.
本文讨论F4上n维线性空间的k维子空间W,这些子空间都有特定的自同构群(实际上是典型群GLn(F4)的一个子群),根据群中元素形式的不同可将子空间W分为两类,并对寻找n维空间中形如这两类的n/2维自对偶子空间提供了一种采用降低维数寻找的方法。  相似文献   
25.
Dependence of Ypt1 and Sec4 membrane attachment on Bet2   总被引:22,自引:0,他引:22  
G Rossi  J A Yu  A P Newman  S Ferro-Novick 《Nature》1991,351(6322):158-161
Many small GTP-binding proteins are synthesized as soluble proteins that are post-translationally modified as a prerequisite for membrane attachment. Ypt1 and Sec4 are homologous Raslike GTP-binding proteins that have been proposed to regulate the specificity of vesicular traffic at different stages of the secretory pathway by cycling on and off membranes. Here we show that BET2, initially identified as a gene required for transport from endoplasmic reticulum to Golgi apparatus in yeast, encodes a factor that is needed for the membrane attachment of Ypt1 and Sec4. DNA sequence analysis has revealed that Bet2 is homologous to Dpr1 (Ram1), an essential component of a protein prenyltransferase that modifies Ras, enabling it to attach to membranes. We propose that Bet2 modifies Ypt1 and Sec4 in an analogous manner.  相似文献   
26.
27.
28.
Understanding the molecular underpinnings of cancer is of critical importance to the development of targeted intervention strategies. Identification of such targets, however, is notoriously difficult and unpredictable. Malignant cell transformation requires the cooperation of a few oncogenic mutations that cause substantial reorganization of many cell features and induce complex changes in gene expression patterns. Genes critical to this multifaceted cellular phenotype have therefore only been identified after signalling pathway analysis or on an ad hoc basis. Our observations that cell transformation by cooperating oncogenic lesions depends on synergistic modulation of downstream signalling circuitry suggest that malignant transformation is a highly cooperative process, involving synergy at multiple levels of regulation, including gene expression. Here we show that a large proportion of genes controlled synergistically by loss-of-function p53 and Ras activation are critical to the malignant state of murine and human colon cells. Notably, 14 out of 24 'cooperation response genes' were found to contribute to tumour formation in gene perturbation experiments. In contrast, only 1 in 14 perturbations of the genes responding in a non-synergistic manner had a similar effect. Synergistic control of gene expression by oncogenic mutations thus emerges as an underlying key to malignancy, and provides an attractive rationale for identifying intervention targets in gene networks downstream of oncogenic gain- and loss-of-function mutations.  相似文献   
29.
Characterisation of a rotavirus.20b.   总被引:6,自引:0,他引:6  
J F Newman  F Brown  J C Bridger  G N Woode 《Nature》1975,258(5536):631-633
  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号