首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3372篇
  免费   26篇
  国内免费   47篇
系统科学   34篇
丛书文集   67篇
教育与普及   125篇
理论与方法论   11篇
现状及发展   204篇
研究方法   533篇
综合类   2471篇
  2018年   7篇
  2017年   9篇
  2016年   9篇
  2015年   3篇
  2014年   9篇
  2013年   15篇
  2012年   228篇
  2011年   299篇
  2010年   102篇
  2009年   88篇
  2008年   322篇
  2007年   306篇
  2006年   344篇
  2005年   366篇
  2004年   171篇
  2003年   178篇
  2002年   178篇
  2001年   129篇
  2000年   222篇
  1999年   83篇
  1998年   41篇
  1997年   17篇
  1996年   13篇
  1995年   7篇
  1994年   13篇
  1993年   16篇
  1992年   4篇
  1991年   4篇
  1990年   8篇
  1989年   16篇
  1988年   6篇
  1987年   4篇
  1986年   4篇
  1985年   10篇
  1984年   5篇
  1983年   7篇
  1982年   15篇
  1981年   11篇
  1980年   4篇
  1979年   6篇
  1971年   5篇
  1970年   6篇
  1966年   4篇
  1959年   14篇
  1958年   34篇
  1957年   23篇
  1956年   18篇
  1955年   12篇
  1954年   20篇
  1948年   14篇
排序方式: 共有3445条查询结果,搜索用时 15 毫秒
251.
252.
Phosphoinositide-3-OH kinase (PI(3)K), activated through growth factor stimulation, generates a lipid second messenger, phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3). PtdIns(3,4,5)P3 is instrumental in signalling pathways that trigger cell activation, cytoskeletal rearrangement, survival and other reactions. However, some targets of PtdIns(3,4,5)P3 are yet to be discovered. We demonstrate that SWAP-70, a unique signalling protein, specifically binds PtdIns(3,4,5)P3. On stimulation by growth factors, cytoplasmic SWAP-70, which is dependent on PI(3)K but independent of Ras, moved to cell membrane rearrangements known as ruffles. However, mutant SWAP-70 lacking the ability to bind PtdIns(3,4,5)P3 blocked membrane ruffling induced by epidermal growth factor or platelet-derived growth factor. SWAP-70 shows low homology with Rac-guanine nucleotide exchange factors (GEFs), and catalyses PtdIns(3,4,5)P3-dependent guanine nucleotide exchange to Rac. SWAP-70-deficient fibroblasts showed impaired membrane ruffling after stimulation with epidermal growth factor, and failed to activate Rac fully. We conclude that SWAP-70 is a new type of Rac-GEF which, independently of Ras, transduces signals from tyrosine kinase receptors to Rac.  相似文献   
253.
Now that gamma-ray bursts (GRBs) have been determined to lie at cosmological distances, their isotropic burst energies are estimated to be as high as 1054 erg (ref. 2), making them the most energetic phenomena in the Universe. The nature of the progenitors responsible for the bursts remains, however, elusive. The favoured models range from the merger of two neutron stars in a binary system to the collapse of a massive star. Spectroscopic studies of the afterglow emission could reveal details of the environment of the burst, by indicating the elements present, the speed of the outflow and an estimate of the temperature. Here we report an X-ray spectrum of the afterglow of GRB011211, which shows emission lines of magnesium, silicon, sulphur, argon, calcium and possibly nickel, arising in metal-enriched material with an outflow velocity of the order of one-tenth the speed of light. These observations strongly favour models where a supernova explosion from a massive stellar progenitor precedes the burst event and is responsible for the outflowing matter.  相似文献   
254.
Aono N  Sutani T  Tomonaga T  Mochida S  Yanagida M 《Nature》2002,417(6885):197-202
Chromosome condensation requires condensin, which comprises five subunits. Two of these subunits--both being structural maintenance of chromosome (SMC) proteins-are coiled-coils with globular terminal domains that interact with ATP and DNA. The remaining three, non-SMC subunits also have essential, albeit undefined, roles in condensation. Here we report that Cnd2 (ref. 6), a non-SMC subunit of fission yeast similar to Drosophila Barren and the budding yeast protein Brn1 (refs 8, 9), is required for both interphase and mitotic condensation. In cnd2-1 mutants, ultraviolet-induced DNA damage is not repaired, and cells arrested by hydroxyurea do not recover. A definitive defect of interphase is abolishment of Cds1 (a checkpoint kinase) activation in the presence of hydroxyurea in both cnd2-1 mutant cells and in cells where other condensin subunits have been genetically disrupted. In the absence of hydroxyurea, a G2 checkpoint delay occurred in cnd2-1 mutants in a manner dependent on Cds1 and ATM-like Rad3, but not Chk1 (refs 10-13), before the mitotic condensation defect. Furthermore, cnd2-1 was synthetic-lethal with mutations of excision repair, RecQ helicase and DNA replication enzymes. These interphase and mitotic defects provide insight into the mechanistic role of non-SMC subunits that interact with the globular SMC domains in the heteropentameric holocomplex.  相似文献   
255.
Marine iguanas die from trace oil pollution   总被引:1,自引:0,他引:1  
Wikelski M  Wong V  Chevalier B  Rattenborg N  Snell HL 《Nature》2002,417(6889):607-608
An oil tanker ran aground on the Galapagos island of San Cristóbal on 17 January 2001, spilling roughly three million litres of diesel and bunker oil. The slick started to spread westwards and was dispersed by strong currents, so only a few marine animals were killed immediately as a result. Here we draw on the long-term data sets gathered before the spill to show that a population of marine iguanas (Amblyrhychus cristatus) on Sante Fe island suffered a massive 62% mortality in the year after the accident, due to a small amount of residual oil contamination in the sea. Another population on the more remote island of Genovesa was unaffected.  相似文献   
256.
Snowball fights   总被引:2,自引:0,他引:2  
Lubick N 《Nature》2002,417(6884):12-13
  相似文献   
257.
Embryonic stem cells offer unprecedented opportunities for random or targeted genome alterations in the mouse. We present here an efficient strategy to create chromosome-specific loss of heterozygosity in embryonic stem cells. The combination of this method with genome-wide mutagenesis in ES cells (using chemical mutagens or gene-trap vectors) opens up the possibility for in vitro or in vivo functional screening of recessive mutations in the mouse.  相似文献   
258.
259.
A nuclear-mitochondrial DNA interaction affecting hearing impairment in mice   总被引:13,自引:0,他引:13  
The pathophysiologic pathways and clinical expression of mitochondrial DNA (mtDNA) mutations are not well understood. This is mainly the result of the heteroplasmic nature of most pathogenic mtDNA mutations and of the absence of clinically relevant animal models with mtDNA mutations. mtDNA mutations predisposing to hearing impairment in humans are generally homoplasmic, yet some individuals with these mutations have severe hearing loss, whereas their maternal relatives with the identical mtDNA mutation have normal hearing. Epidemiologic, biochemical and genetic data indicate that nuclear genes are often the main determinants of these differences in phenotype. To identify a mouse model for maternally inherited hearing loss, we screened reciprocal backcrosses of three inbred mouse strains, A/J, NOD/LtJ and SKH2/J, with age-related hearing loss (AHL). In the (A/J x CAST/Ei) x A/J backcross, mtDNA derived from the A/J strain exerted a significant detrimental effect on hearing when compared with mtDNA from the CAST/Ei strain. This effect was not seen in the (NOD/LtJ x CAST/Ei) x NOD/LtJ and (SKH2/J x CAST/Ei) x SKH2/J backcrosses. Genotyping revealed that this effect was seen only in mice homozygous for the A/J allele at the Ahl locus on mouse chromosome 10. Sequencing of the mitochondrial genome in the three inbred strains revealed a single nucleotide insertion in the tRNA-Arg gene (mt-Tr) as the probable mediator of the mitochondrial effect. This is the first mouse model with a naturally occurring mtDNA mutation affecting a clinical phenotype, and it provides an experimental model to dissect the pathophysiologic processes connecting mtDNA mutations to hearing loss.  相似文献   
260.
Mutations or rearrangements in the gene encoding the receptor tyrosine kinase RET result in Hirschsprung disease, cancer and renal malformations. The standard model of renal development involves reciprocal signaling between the ureteric bud epithelium, inducing metanephric mesenchyme to differentiate into nephrons, and metanephric mesenchyme, inducing the ureteric bud to grow and branch. RET and GDNF (a RET ligand) are essential mediators of these epithelial-mesenchymal interactions. Vitamin A deficiency has been associated with widespread embryonic abnormalities, including renal malformations. The vitamin A signal is transduced by nuclear retinoic acid receptors (RARs). We previously showed that two RAR genes, Rara and Rarb2, were colocalized in stromal mesenchyme, a third renal cell type, where their deletion led to altered stromal cell patterning, impaired ureteric bud growth and downregulation of Ret in the ureteric bud. Here we demonstrate that forced expression of Ret in mice deficient for both Rara and Rarb2 (Rara(-/-)Rarb2(-/-)) genetically rescues renal development, restoring ureteric bud growth and stromal cell patterning. Our studies indicate the presence of a new reciprocal signaling loop between the ureteric bud epithelium and the stromal mesenchyme, dependent on Ret and vitamin A. In the first part of the loop, vitamin-A-dependent signals secreted by stromal cells control Ret expression in the ureteric bud. In the second part of the loop, ureteric bud signals dependent on Ret control stromal cell patterning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号