首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   6篇
  国内免费   6篇
系统科学   5篇
丛书文集   1篇
理论与方法论   1篇
现状及发展   14篇
研究方法   9篇
综合类   51篇
自然研究   4篇
  2023年   1篇
  2020年   2篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   12篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   12篇
  2007年   7篇
  2006年   3篇
  2005年   6篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
41.
Melting processes in the deep mantle have important implications for the origin of the deep-derived plumes believed to feed hotspot volcanoes such as those in Hawaii. They also provide insight into how the mantle has evolved, geochemically and dynamically, since the formation of Earth. Melt production in the shallow mantle is quite well understood, but deeper melting near the core-mantle boundary remains controversial. Modelling the dynamic behaviour of deep, partially molten mantle requires knowledge of the density contrast between solid and melt fractions. Although both positive and negative melt buoyancies can produce major chemical segregation between different geochemical reservoirs, each type of buoyancy yields drastically different geodynamical models. Ascent or descent of liquids in a partially molten deep mantle should contribute to surface volcanism or production of a deep magma ocean, respectively. We investigated phase relations in a partially molten chondritic-type material under deep-mantle conditions. Here we show that the iron partition coefficient between aluminium-bearing (Mg,Fe)SiO(3) perovskite and liquid is between 0.45 and 0.6, so iron is not as incompatible with deep-mantle minerals as has been reported previously. Calculated solid and melt density contrasts suggest that melt generated at the core-mantle boundary should be buoyant, and hence should segregate upwards. In the framework of the magma oceans induced by large meteoritic impacts on early Earth, our results imply that the magma crystallization should push the liquids towards the surface and form a deep solid residue depleted in incompatible elements.  相似文献   
42.
43.
44.
One of the outstanding challenges in the field of porous materials is the design and synthesis of chemical structures with exceptionally high surface areas. Such materials are of critical importance to many applications involving catalysis, separation and gas storage. The claim for the highest surface area of a disordered structure is for carbon, at 2,030 m2 g(-1) (ref. 2). Until recently, the largest surface area of an ordered structure was that of zeolite Y, recorded at 904 m2 g(-1) (ref. 3). But with the introduction of metal-organic framework materials, this has been exceeded, with values up to 3,000 m2 g(-1) (refs 4-7). Despite this, no method of determining the upper limit in surface area for a material has yet been found. Here we present a general strategy that has allowed us to realize a structure having by far the highest surface area reported to date. We report the design, synthesis and properties of crystalline Zn4O(1,3,5-benzenetribenzoate)2, a new metal-organic framework with a surface area estimated at 4,500 m2 g(-1). This framework, which we name MOF-177, combines this exceptional level of surface area with an ordered structure that has extra-large pores capable of binding polycyclic organic guest molecules--attributes not previously combined in one material.  相似文献   
45.
Gold nanoparticles have emerged as promising tools for cancer research and therapy, where they can promote thermal killing. The molecular mechanisms underlying these events are not fully understood. The geometry and size of gold nanoparticles can determine the severity of cellular damage. Therefore, small and big gold nanospheres as well as gold nanoflowers were evaluated side-by-side. To obtain quantitative data at the subcellular and molecular level, we assessed how gold nanoparticles, either alone or in combination with mild hyperthermia, altered the physiology of cultured human breast cancer cells. Our analyses focused on the nucleus, because this organelle is essential for cell survival. We showed that all the examined gold nanoparticles associated with nuclei. However, their biological effects were quantitatively different. Thus, depending on the shape and size, gold nanoparticles changed multiple nuclear parameters. They redistributed stress-sensitive regulators of nuclear biology, altered the nuclear morphology, reorganized nuclear laminae and envelopes, and inhibited nucleolar functions. In particular, gold nanoparticles reduced the de novo biosynthesis of RNA in nucleoli, the subnuclear compartments that produce ribosomes. While small gold nanospheres and nanoflowers, but not big gold nanospheres, damaged the nucleus at normal growth temperature, several of these defects were further exacerbated by mild hyperthermia. Taken together, the toxicity of gold nanoparticles correlated with changes in nuclear organization and function. These results emphasize that the cell nucleus is a prominent target for gold nanoparticles of different morphologies. Moreover, we demonstrated that RNA synthesis in nucleoli provides quantitative information on nuclear damage and cancer cell survival.  相似文献   
46.
Using a positional cloning approach supported by comparative genomics, we have identified a previously unreported gene, EYS, at the RP25 locus on chromosome 6q12 commonly mutated in autosomal recessive retinitis pigmentosa. Spanning over 2 Mb, this is the largest eye-specific gene identified so far. EYS is independently disrupted in four other mammalian lineages, including that of rodents, but is well conserved from Drosophila to man and is likely to have a role in the modeling of retinal architecture.  相似文献   
47.
The World Health Organization conservatively estimates that 80 million people suffer from infertility worldwide. Male factors are believed to be responsible for 20-50% of all infertility cases, but microdeletions of the Y chromosome are the only genetic defects altering human spermatogenesis that have been reported repeatedly. We focused our work on infertile men with a normal somatic karyotype but typical spermatozoa mainly characterized by large heads, a variable number of tails and an increased chromosomal content (OMIM 243060). We performed a genome-wide microsatellite scan on ten infertile men presenting this characteristic phenotype. In all of these men, we identified a common region of homozygosity harboring the aurora kinase C gene (AURKC) with a single nucleotide deletion in the AURKC coding sequence. In addition, we show that this founder mutation results in premature termination of translation, yielding a truncated protein that lacks the kinase domain. We conclude that the absence of AURKC causes male infertility owing to the production of large-headed multiflagellar polyploid spermatozoa.  相似文献   
48.
Members of the intracellular nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family contribute to immune responses through activation of nuclear factor-κB (NF-κB), type I interferon and inflammasome signalling. Mice lacking the NLR family member NLRP6 were recently shown to be susceptible to colitis and colorectal tumorigenesis, but the role of NLRP6 in microbial infections and the nature of the inflammatory signalling pathways regulated by NLRP6 remain unclear. Here we show that Nlrp6-deficient mice are highly resistant to infection with the bacterial pathogens Listeria monocytogenes, Salmonella typhimurium and Escherichia coli. Infected Nlrp6-deficient mice had increased numbers of monocytes and neutrophils in circulation, and NLRP6 signalling in both haematopoietic and radioresistant cells contributed to increased susceptibility. Nlrp6 deficiency enhanced activation of mitogen-activated protein kinase (MAPK) and the canonical NF-κB pathway after Toll-like receptor ligation, but not cytosolic NOD1/2 ligation, in vitro. Consequently, infected Nlrp6-deficient cells produced increased levels of NF-κB- and MAPK-dependent cytokines and chemokines. Thus, our results reveal NLRP6 as a negative regulator of inflammatory signalling, and demonstrate a role for this NLR in impeding clearance of both Gram-positive and -negative bacterial pathogens.  相似文献   
49.
Bioactive glasses and ceramics have been widely investigated for bone repair because of their excel-lent bioactive characteristics. However, these biomaterials undergo incomplete conversion into a bone-like material, which severely limits their biomedical application. In this paper, borosilicate bioac-tive glasses were prepared by traditional melting process. The results showed that borosilicate glasses possessed high biocompatibility and bioactivity. In addition, when immersed in a 0.02 mol/L K2HPO4 solution, particles of a borate glass were fully converted to HA. The desirable conversion rate to HA may be achieved through the adjustment of the B2O3/SiO2 ratio. The results of XRD and FTIR analysis indicated that the degradation product was carbonate-substituted hydroxyapatite, which was similar to the inorganic component of bone.  相似文献   
50.
Korn T  Bettelli E  Gao W  Awasthi A  Jäger A  Strom TB  Oukka M  Kuchroo VK 《Nature》2007,448(7152):484-487
On activation, naive T cells differentiate into effector T-cell subsets with specific cytokine phenotypes and specialized effector functions. Recently a subset of T cells, distinct from T helper (T(H))1 and T(H)2 cells, producing interleukin (IL)-17 (T(H)17) was defined and seems to have a crucial role in mediating autoimmunity and inducing tissue inflammation. We and others have shown that transforming growth factor (TGF)-beta and IL-6 together induce the differentiation of T(H)17 cells, in which IL-6 has a pivotal function in dictating whether T cells differentiate into Foxp3+ regulatory T cells (T(reg) cells) or T(H)17 cells. Whereas TGF-beta induces Foxp3 and generates T(reg) cells, IL-6 inhibits the generation of T(reg) cells and induces the production of IL-17, suggesting a reciprocal developmental pathway for T(H)17 and T(reg) cells. Here we show that IL-6-deficient (Il6-/-) mice do not develop a T(H)17 response and their peripheral repertoire is dominated by Foxp3+ T(reg) cells. However, deletion of T(reg) cells leads to the reappearance of T(H)17 cells in Il6-/- mice, suggesting an additional pathway by which T(H)17 cells might be generated in vivo. We show that an IL-2 cytokine family member, IL-21, cooperates with TGF-beta to induce T(H)17 cells in naive Il6-/- T cells and that IL-21-receptor-deficient T cells are defective in generating a T(H)17 response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号