首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   1篇
  国内免费   2篇
理论与方法论   3篇
现状及发展   6篇
研究方法   7篇
综合类   36篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   6篇
  2011年   9篇
  2010年   2篇
  2009年   1篇
  2008年   7篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2001年   4篇
  2000年   2篇
  1970年   1篇
排序方式: 共有52条查询结果,搜索用时 0 毫秒
41.
The Automatic Identification System (AIS) is a maritime equipment to allow an efficient exchange of the navigational data between ships and between ships and shore stations. It utilizes a channel access algorithm which can quickly resolve conflicts without any intervention from control stations. In this paper, a design of channel access algorithm for the AIS is presented. The input/output relationship of each access algorithm module is defined by drawing the state transition diagram, dataflow diagram and flowchart based on the technical standard, ITU-R M.1371. In order to verify the designed channel access algorithm, the simulator was developed using the C/C++ programming language. The results show that the proposed channel access algorithm can properly allocate transmission slots and meet the operational performance requirements specified by the technical standard.  相似文献   
42.
The purpose of this study is to gain a better understanding of the role of abstraction and idealization in Galileo’s scientific inquiries into the law of free falling motion, and their importance in the history of science. Because there is no consensus on the use of the terms “abstraction” and “idealization” in the literature, it is necessary to distinguish between them at the outset. This paper will argue (1) for the importance of abstraction and idealization in physics and the theories and laws of physics constructed with abduction from observations and (2) that these theoretical laws of physics should be tested with deduction and induction thorough quasi-idealized entities rather than empirical results in the everyday world. Galileo’s work is linked to thought experiments in natural science. Galileo, using thought experiments based on idealization, persuaded others that what had been proven true for a ball on an inclined plane would be equally true for a ball falling through a vacuum.  相似文献   
43.
The insulin signaling pathway regulates whole-body glucose homeostasis by transducing extracellular signals from the insulin receptor (IR) to downstream intracellular targets, thus coordinating a multitude of biological functions. Dysregulation of IR or its signal transduction is associated with insulin resistance, which may culminate in type 2 diabetes. Following initial stimulation of IR, insulin signaling diverges into different pathways, activating multiple substrates that have roles in various metabolic and cellular processes. The integration of multiple pathways arising from IR activation continues to expand as new IR substrates are identified and characterized. Accordingly, our review will focus on roles for IR substrates as they pertain to three primary areas: metabolism/glucose uptake, mitogenesis/growth, and aging/longevity. While IR functions in a seemingly pleiotropic manner in many cell types, through these three main roles in fat and skeletal muscle cells, IR multi-tasks to regulate whole-body glucose homeostasis to impact healthspan and lifespan.  相似文献   
44.
Rapid translation of genome sequences into meaningful biological information hinges on the integration of multiple experimental and informatics methods into a cohesive platform. Despite the explosion in the number of genome sequences available, such a platform does not exist for filamentous fungi. Here we present the development and application of a functional genomics and informatics platform for a model plant pathogenic fungus, Magnaporthe oryzae. In total, we produced 21,070 mutants through large-scale insertional mutagenesis using Agrobacterium tumefaciens-mediated transformation. We used a high-throughput phenotype screening pipeline to detect disruption of seven phenotypes encompassing the fungal life cycle and identified the mutated gene and the nature of mutation for each mutant. Comparative analysis of phenotypes and genotypes of the mutants uncovered 202 new pathogenicity loci. Our findings demonstrate the effectiveness of our platform and provide new insights on the molecular basis of fungal pathogenesis. Our approach promises comprehensive functional genomics in filamentous fungi and beyond.  相似文献   
45.
Kho C  Lee A  Jeong D  Oh JG  Chaanine AH  Kizana E  Park WJ  Hajjar RJ 《Nature》2011,477(7366):601-605
The calcium-transporting ATPase ATP2A2, also known as SERCA2a, is a critical ATPase responsible for Ca(2+) re-uptake during excitation-contraction coupling. Impaired Ca(2+) uptake resulting from decreased expression and reduced activity of SERCA2a is a hallmark of heart failure. Accordingly, restoration of SERCA2a expression by gene transfer has proved to be effective in improving cardiac function in heart-failure patients, as well as in animal models. The small ubiquitin-related modifier (SUMO) can be conjugated to lysine residues of target proteins, and is involved in many cellular processes. Here we show that SERCA2a is SUMOylated at lysines 480 and 585 and that this SUMOylation is essential for preserving SERCA2a ATPase activity and stability in mouse and human cells. The levels of SUMO1 and the SUMOylation of SERCA2a itself were greatly reduced in failing hearts. SUMO1 restitution by adeno-associated-virus-mediated gene delivery maintained the protein abundance of SERCA2a and markedly improved cardiac function in mice with heart failure. This effect was comparable to SERCA2A gene delivery. Moreover, SUMO1 overexpression in isolated cardiomyocytes augmented contractility and accelerated Ca(2+) decay. Transgene-mediated SUMO1 overexpression rescued cardiac dysfunction induced by pressure overload concomitantly with increased SERCA2a function. By contrast, downregulation of SUMO1 using small hairpin RNA (shRNA) accelerated pressure-overload-induced deterioration of cardiac function and was accompanied by decreased SERCA2a function. However, knockdown of SERCA2a resulted in severe contractile dysfunction both in vitro and in vivo, which was not rescued by overexpression of SUMO1. Taken together, our data show that SUMOylation is a critical post-translational modification that regulates SERCA2a function, and provide a platform for the design of novel therapeutic strategies for heart failure.  相似文献   
46.
Raymond PA  Oh NH  Turner RE  Broussard W 《Nature》2008,451(7177):449-452
The water and dissolved inorganic carbon exported by rivers are important net fluxes that connect terrestrial and oceanic water and carbon reservoirs. For most rivers, the majority of dissolved inorganic carbon is in the form of bicarbonate. The riverine bicarbonate flux originates mainly from the dissolution of rock minerals by soil water carbon dioxide, a process called chemical weathering, which controls the buffering capacity and mineral content of receiving streams and rivers. Here we introduce an unprecedented high-temporal-resolution, 100-year data set from the Mississippi River and couple it with sub-watershed and precipitation data to reveal that the large increase in bicarbonate flux that has occurred over the past 50 years (ref. 3) is clearly anthropogenically driven. We show that the increase in bicarbonate and water fluxes is caused mainly by an increase in discharge from agricultural watersheds that has not been balanced by a rise in precipitation, which is also relevant to nutrient and pesticide fluxes to the Gulf of Mexico. These findings demonstrate that alterations in chemical weathering are relevant to improving contemporary biogeochemical budgets. Furthermore, land use change and management were arguably more important than changes in climate and plant CO2 fertilization to increases in riverine water and carbon export from this large region over the past 50 years.  相似文献   
47.
Yang YD  Cho H  Koo JY  Tak MH  Cho Y  Shim WS  Park SP  Lee J  Lee B  Kim BM  Raouf R  Shin YK  Oh U 《Nature》2008,455(7217):1210-1215
Calcium (Ca(2+))-activated chloride channels are fundamental mediators in numerous physiological processes including transepithelial secretion, cardiac and neuronal excitation, sensory transduction, smooth muscle contraction and fertilization. Despite their physiological importance, their molecular identity has remained largely unknown. Here we show that transmembrane protein 16A (TMEM16A, which we also call anoctamin 1 (ANO1)) is a bona fide Ca(2+)-activated chloride channel that is activated by intracellular Ca(2+) and Ca(2+)-mobilizing stimuli. With eight putative transmembrane domains and no apparent similarity to previously characterized channels, ANO1 defines a new family of ionic channels. The biophysical properties as well as the pharmacological profile of ANO1 are in full agreement with native Ca(2+)-activated chloride currents. ANO1 is expressed in various secretory epithelia, the retina and sensory neurons. Furthermore, knockdown of mouse Ano1 markedly reduced native Ca(2+)-activated chloride currents as well as saliva production in mice. We conclude that ANO1 is a candidate Ca(2+)-activated chloride channel that mediates receptor-activated chloride currents in diverse physiological processes.  相似文献   
48.
Li GW  Oh E  Weissman JS 《Nature》2012,484(7395):538-541
  相似文献   
49.
以日用荧光灯和自然光为照射光源 ,研究了TiO2 薄膜的光催化灭菌性能 ,对比了具有不同紫外 可见吸收边波长薄膜的灭菌性能 .结果显示 ,在日用荧光灯照射下吸收边波长在 384nm的TiO2 薄膜具有较优的灭菌性能 ,而吸收边波长为 2 96nm的薄膜未显示明显的灭菌效果 .在室外自然光条件下 ,薄膜显示了灭菌性能 .  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号