首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   0篇
系统科学   4篇
理论与方法论   3篇
现状及发展   108篇
研究方法   20篇
综合类   288篇
自然研究   20篇
  2016年   4篇
  2013年   6篇
  2012年   15篇
  2011年   34篇
  2010年   5篇
  2008年   15篇
  2007年   11篇
  2006年   12篇
  2005年   17篇
  2004年   17篇
  2003年   7篇
  2002年   15篇
  2001年   14篇
  2000年   8篇
  1999年   9篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   13篇
  1991年   6篇
  1990年   10篇
  1989年   3篇
  1988年   11篇
  1987年   5篇
  1986年   8篇
  1985年   22篇
  1984年   15篇
  1983年   3篇
  1982年   4篇
  1981年   6篇
  1980年   7篇
  1979年   16篇
  1978年   15篇
  1977年   8篇
  1976年   3篇
  1975年   5篇
  1974年   10篇
  1973年   8篇
  1972年   10篇
  1971年   8篇
  1970年   10篇
  1969年   7篇
  1968年   9篇
  1967年   4篇
  1966年   7篇
  1965年   9篇
  1960年   1篇
  1957年   1篇
排序方式: 共有443条查询结果,搜索用时 109 毫秒
441.
442.
Macroscopic quantum phenomena such as high-temperature superconductivity, colossal magnetoresistance, ferrimagnetism and ferromagnetism arise from a delicate balance of different interactions among electrons, phonons and spins on the nanoscale. The study of the interplay among these various degrees of freedom in strongly coupled electron-lattice systems is thus crucial to their understanding and for optimizing their properties. Charge-density-wave (CDW) materials, with their inherent modulation of the electron density and associated periodic lattice distortion, represent ideal model systems for the study of such highly cooperative phenomena. With femtosecond time-resolved techniques, it is possible to observe these interactions directly by abruptly perturbing the electronic distribution while keeping track of energy relaxation pathways and coupling strengths among the different subsystems. Numerous time-resolved experiments have been performed on CDWs, probing the dynamics of the electronic subsystem. However, the dynamics of the periodic lattice distortion have been only indirectly inferred. Here we provide direct atomic-level information on the structural dynamics by using femtosecond electron diffraction to study the quasi two-dimensional CDW system 1T-TaS(2). Effectively, we have directly observed the atomic motions that result from the optically induced change in the electronic spatial distribution. The periodic lattice distortion, which has an amplitude of ~0.1??, is suppressed by about 20% on a timescale (~250 femtoseconds) comparable to half the period of the corresponding collective mode. These highly cooperative, electronically driven atomic motions are accompanied by a rapid electron-phonon energy transfer (~350 femtoseconds) and are followed by fast recovery of the CDW (~4 picoseconds). The degree of cooperativity in the observed structural dynamics is remarkable and illustrates the importance of obtaining atomic-level perspectives of the processes directing the physics of strongly correlated systems.  相似文献   
443.
Methane is an important greenhouse gas, and its atmospheric concentration has nearly tripled since pre-industrial times. The growth rate of atmospheric methane is determined by the balance between surface emissions and photochemical destruction by the hydroxyl radical, the major atmospheric oxidant. Remarkably, this growth rate has decreased markedly since the early 1990s, and the level of methane has remained relatively constant since 1999, leading to a downward revision of its projected influence on global temperatures. Large fluctuations in the growth rate of atmospheric methane are also observed from one year to the next, but their causes remain uncertain. Here we quantify the processes that controlled variations in methane emissions between 1984 and 2003 using an inversion model of atmospheric transport and chemistry. Our results indicate that wetland emissions dominated the inter-annual variability of methane sources, whereas fire emissions played a smaller role, except during the 1997-1998 El Ni?o event. These top-down estimates of changes in wetland and fire emissions are in good agreement with independent estimates based on remote sensing information and biogeochemical models. On longer timescales, our results show that the decrease in atmospheric methane growth during the 1990s was caused by a decline in anthropogenic emissions. Since 1999, however, they indicate that anthropogenic emissions of methane have risen again. The effect of this increase on the growth rate of atmospheric methane has been masked by a coincident decrease in wetland emissions, but atmospheric methane levels may increase in the near future if wetland emissions return to their mean 1990s levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号