首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   1篇
  国内免费   2篇
系统科学   2篇
丛书文集   53篇
现状及发展   37篇
研究方法   11篇
综合类   113篇
自然研究   3篇
  2020年   3篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   9篇
  2011年   11篇
  2010年   4篇
  2009年   6篇
  2008年   6篇
  2007年   10篇
  2006年   4篇
  2005年   7篇
  2004年   6篇
  2003年   4篇
  2002年   8篇
  1997年   1篇
  1991年   1篇
  1979年   1篇
  1968年   1篇
  1959年   16篇
  1958年   30篇
  1957年   22篇
  1956年   10篇
  1955年   15篇
  1954年   23篇
  1948年   7篇
  1947年   3篇
排序方式: 共有219条查询结果,搜索用时 15 毫秒
201.
202.
203.
204.
Skp2 and its cofactor Cks1 are the substrate-targeting subunits of the SCF(Skp2-Cks1) (Skp1/Cul1/F-box protein) ubiquitin ligase complex that regulates entry into S phase by inducing the degradation of the cyclin-dependent kinase inhibitors p21 and p27 (ref. 1). Skp2 is an oncoprotein that often shows increased expression in human cancers; however, the mechanism that regulates its cellular abundance is not well understood. Here we show that both Skp2 and Cks1 proteins are unstable in G1 and that their degradation is mediated by the ubiquitin ligase APC/C(Cdh1) (anaphase-promoting complex/cyclosome and its activator Cdh1). Silencing of Cdh1 by RNA interference in G1 cells stabilizes Skp2 and Cks1, with a consequent increase in p21 and p27 proteolysis. Depletion of Cdh1 also increases the percentage of cells in S phase, whereas concomitant downregulation of Skp2 reverses this effect, showing that Skp2 is an essential target of APC/C(Cdh1). Expression of a stable Skp2 mutant that cannot bind APC/C(Cdh1) induces premature entry into S phase. Thus, the induction of Skp2 and Cks1 degradation in G1 represents a principal mechanism by which APC/C(Cdh1) prevents the unscheduled degradation of SCF(Skp2-Cks1) substrates and maintains the G1 state.  相似文献   
205.
Yasuda S  Townsend D  Michele DE  Favre EG  Day SM  Metzger JM 《Nature》2005,436(7053):1025-1029
Dystrophin deficiency causes Duchenne muscular dystrophy (DMD) in humans, an inherited and progressive disease of striated muscle deterioration that frequently involves pronounced cardiomyopathy. Heart failure is the second leading cause of fatalities in DMD. Progress towards defining the molecular basis of disease in DMD has mostly come from studies on skeletal muscle, with comparatively little attention directed to cardiac muscle. The pathophysiological mechanisms involved in cardiac myocytes may differ significantly from skeletal myofibres; this is underscored by the presence of significant cardiac disease in patients with truncated or reduced levels of dystrophin but without skeletal muscle disease. Here we show that intact, isolated dystrophin-deficient cardiac myocytes have reduced compliance and increased susceptibility to stretch-mediated calcium overload, leading to cell contracture and death, and that application of the membrane sealant poloxamer 188 corrects these defects in vitro. In vivo administration of poloxamer 188 to dystrophic mice instantly improved ventricular geometry and blocked the development of acute cardiac failure during a dobutamine-mediated stress protocol. Once issues relating to optimal dosing and long-term effects of poloxamer 188 in humans have been resolved, chemical-based membrane sealants could represent a new therapeutic approach for preventing or reversing the progression of cardiomyopathy and heart failure in muscular dystrophy.  相似文献   
206.
207.
208.
209.
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号