首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   0篇
  国内免费   1篇
现状及发展   18篇
研究方法   10篇
综合类   67篇
  2017年   2篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   9篇
  2007年   13篇
  2006年   9篇
  2005年   10篇
  2004年   5篇
  2003年   9篇
  2002年   10篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1988年   2篇
  1985年   1篇
  1982年   2篇
  1973年   4篇
  1972年   2篇
  1968年   1篇
  1967年   3篇
排序方式: 共有95条查询结果,搜索用时 0 毫秒
31.
Signal transduction through Toll-like receptors (TLRs) originates from their intracellular Toll/interleukin-1 receptor (TIR) domain, which binds to MyD88, a common adaptor protein containing a TIR domain. Although cytokine production is completely abolished in MyD88-deficient mice, some responses to lipopolysaccharide (LPS), including the induction of interferon-inducible genes and the maturation of dendritic cells, are still observed. Another adaptor, TIRAP (also known as Mal), has been cloned as a molecule that specifically associates with TLR4 and thus may be responsible for the MyD88-independent response. Here we report that LPS-induced splenocyte proliferation and cytokine production are abolished in mice lacking TIRAP. As in MyD88-deficient mice, LPS activation of the nuclear factor NF-kappaB and mitogen-activated protein kinases is induced with delayed kinetics in TIRAP-deficient mice. Expression of interferon-inducible genes and the maturation of dendritic cells is observed in these mice; they also show defective response to TLR2 ligands, but not to stimuli that activate TLR3, TLR7 or TLR9. In contrast to previous suggestions, our results show that TIRAP is not specific to TLR4 signalling and does not participate in the MyD88-independent pathway. Instead, TIRAP has a crucial role in the MyD88-dependent signalling pathway shared by TLR2 and TLR4.  相似文献   
32.
Arabidopsis boron transporter for xylem loading   总被引:21,自引:0,他引:21  
Boron deficiency hampers the productivity of 132 crops in more than 80 countries. Boron is essential in higher plants primarily for maintaining the integrity of cell walls and is also beneficial and might be essential in animals and in yeast. Understanding the molecular mechanism(s) of boron transport is crucial for alleviating boron deficiency. Here we describe the molecular identification of boron transporters in biological systems. The Arabidopsis thaliana mutant bor1-1 is sensitive to boron deficiency. Uptake studies indicated that xylem loading is the key step for boron accumulation in shoots with a low external boron supply and that the bor1-1 mutant is defective in this process. Positional cloning identified BOR1 as a membrane protein with homology to bicarbonate transporters in animals. Moreover, a fusion protein of BOR1 and green fluorescent protein (GFP) localized to the plasma membrane in transformed cells. The promoter of BOR1 drove GFP expression in root pericycle cells. When expressed in yeast, BOR1 decreased boron concentrations in cells. We show here that BOR1 is an efflux-type boron transporter for xylem loading and is essential for protecting shoots from boron deficiency.  相似文献   
33.
Despite the enormous ecological and economic importance of coral reefs, the keystone organisms in their establishment, the scleractinian corals, increasingly face a range of anthropogenic challenges including ocean acidification and seawater temperature rise. To understand better the molecular mechanisms underlying coral biology, here we decoded the approximately 420-megabase genome of Acropora digitifera using next-generation sequencing technology. This genome contains approximately 23,700 gene models. Molecular phylogenetics indicate that the coral and the sea anemone Nematostella vectensis diverged approximately 500 million years ago, considerably earlier than the time over which modern corals are represented in the fossil record (~240 million years ago). Despite the long evolutionary history of the endosymbiosis, no evidence was found for horizontal transfer of genes from symbiont to host. However, unlike several other corals, Acropora seems to lack an enzyme essential for cysteine biosynthesis, implying dependency of this coral on its symbionts for this amino acid. Corals inhabit environments where they are frequently exposed to high levels of solar radiation, and analysis of the Acropora genome data indicates that the coral host can independently carry out de novo synthesis of mycosporine-like amino acids, which are potent ultraviolet-protective compounds. In addition, the coral innate immunity repertoire is notably more complex than that of the sea anemone, indicating that some of these genes may have roles in symbiosis or coloniality. A number of genes with putative roles in calcification were identified, and several of these are restricted to corals. The coral genome provides a platform for understanding the molecular basis of symbiosis and responses to environmental changes.  相似文献   
34.
35.
Hayama R  Yokoi S  Tamaki S  Yano M  Shimamoto K 《Nature》2003,422(6933):719-722
The photoperiodic control of flowering is one of the important developmental processes of plants because it is directly related to successful reproduction. Although the molecular genetic analysis of Arabidopsis thaliana, a long-day (LD) plant, has provided models to explain the control of flowering time in this species, very little is known about its molecular mechanisms for short-day (SD) plants. Here we show how the photoperiodic control of flowering is regulated in rice, a SD plant. Overexpression of OsGI, an orthologue of the Arabidopsis GIGANTEA (GI) gene in transgenic rice, caused late flowering under both SD and LD conditions. Expression of the rice orthologue of the Arabidopsis CONSTANS (CO) gene was increased in the transgenic rice, whereas expression of the rice orthologue of FLOWERING LOCUS T (FT) was suppressed. Our results indicate that three key regulatory genes for the photoperiodic control of flowering are conserved between Arabidopsis, a LD plant, and rice, a SD plant, but regulation of the FT gene by CO was reversed, resulting in the suppression of flowering in rice under LD conditions.  相似文献   
36.
Summary We established a perifusion system using mouse thyroid glands. In this system, TSH increased the release of T3 and T4 significantly, and the response of thyroglobulin to TSH was delayed in comparison with that of T3 and T4.  相似文献   
37.
Introduction Surfactant self-assemblies, such as reverse micelles ormicroemulsions, create unique environments in or-ganic solvents. These aggregates display a range of in-teresting physico-chemical properties that havebrought about great potential in mod…  相似文献   
38.
39.
40.
An efflux transporter of silicon in rice   总被引:10,自引:0,他引:10  
Ma JF  Yamaji N  Mitani N  Tamai K  Konishi S  Fujiwara T  Katsuhara M  Yano M 《Nature》2007,448(7150):209-212
Silicon is an important nutrient for the optimal growth and sustainable production of rice. Rice accumulates up to 10% silicon in the shoot, and this high accumulation is required to protect the plant from multiple abiotic and biotic stresses. A gene, Lsi1, that encodes a silicon influx transporter has been identified in rice. Here we describe a previously uncharacterized gene, low silicon rice 2 (Lsi2), which has no similarity to Lsi1. This gene is constitutively expressed in the roots. The protein encoded by this gene is localized, like Lsi1, on the plasma membrane of cells in both the exodermis and the endodermis, but in contrast to Lsi1, which is localized on the distal side, Lsi2 is localized on the proximal side of the same cells. Expression of Lsi2 in Xenopus oocytes did not result in influx transport activity for silicon, but preloading of the oocytes with silicon resulted in a release of silicon, indicating that Lsi2 is a silicon efflux transporter. The identification of this silicon transporter revealed a unique mechanism of nutrient transport in plants: having an influx transporter on one side and an efflux transporter on the other side of the cell to permit the effective transcellular transport of the nutrients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号