首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17927篇
  免费   59篇
  国内免费   55篇
系统科学   283篇
丛书文集   444篇
教育与普及   36篇
理论与方法论   66篇
现状及发展   8375篇
研究方法   761篇
综合类   7874篇
自然研究   202篇
  2012年   231篇
  2011年   463篇
  2010年   115篇
  2009年   100篇
  2008年   291篇
  2007年   368篇
  2006年   305篇
  2005年   320篇
  2004年   289篇
  2003年   344篇
  2002年   276篇
  2001年   616篇
  2000年   616篇
  1999年   352篇
  1993年   93篇
  1992年   340篇
  1991年   253篇
  1990年   300篇
  1989年   274篇
  1988年   266篇
  1987年   282篇
  1986年   284篇
  1985年   344篇
  1984年   248篇
  1983年   219篇
  1982年   208篇
  1981年   246篇
  1980年   264篇
  1979年   590篇
  1978年   475篇
  1977年   483篇
  1976年   366篇
  1975年   382篇
  1974年   593篇
  1973年   470篇
  1972年   422篇
  1971年   516篇
  1970年   675篇
  1969年   591篇
  1968年   512篇
  1967年   541篇
  1966年   449篇
  1965年   337篇
  1964年   95篇
  1959年   203篇
  1958年   296篇
  1957年   193篇
  1956年   172篇
  1955年   167篇
  1954年   159篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
231.
Jamming by shear     
Bi D  Zhang J  Chakraborty B  Behringer RP 《Nature》2011,480(7377):355-358
A broad class of disordered materials including foams, glassy molecular systems, colloids and granular materials can form jammed states. A jammed system can resist small stresses without deforming irreversibly, whereas unjammed systems flow under any applied stresses. The broad applicability of the Liu-Nagel jamming concept has attracted intensive theoretical and modelling interest but has prompted less experimental effort. In the Liu-Nagel framework, jammed states of athermal systems exist only above a certain critical density. Although numerical simulations for particles that do not experience friction broadly support this idea, the nature of the jamming transition for frictional grains is less clear. Here we show that jamming of frictional, disk-shaped grains can be induced by the application of shear stress at densities lower than the critical value, at which isotropic (shear-free) jamming occurs. These jammed states have a much richer phenomenology than the isotropic jammed states: for small applied shear stresses, the states are fragile, with a strong force network that percolates only in one direction. A minimum shear stress is needed to create robust, shear-jammed states with a strong force network percolating in all directions. The transitions from unjammed to fragile states and from fragile to shear-jammed states are controlled by the fraction of force-bearing grains. The fractions at which these transitions occur are statistically independent of the density. Jammed states with densities lower than the critical value have an anisotropic fabric (contact network). The minimum anisotropy of shear-jammed states vanishes as the density approaches the critical value from below, in a manner reminiscent of an order-disorder transition.  相似文献   
232.
233.
234.
235.
The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a hexagonal, two-dimensional crystal of carbon atoms. Single-atom-thick graphene sheets can now be produced by chemical vapour deposition on scales of up to metres, making their polycrystallinity almost unavoidable. Theoretically, graphene grain boundaries are predicted to have distinct electronic, magnetic, chemical and mechanical properties that strongly depend on their atomic arrangement. Yet because of the five-order-of-magnitude size difference between grains and the atoms at grain boundaries, few experiments have fully explored the graphene grain structure. Here we use a combination of old and new transmission electron microscopy techniques to bridge these length scales. Using atomic-resolution imaging, we determine the location and identity of every atom at a grain boundary and find that different grains stitch together predominantly through pentagon-heptagon pairs. Rather than individually imaging the several billion atoms in each grain, we use diffraction-filtered imaging to rapidly map the location, orientation and shape of several hundred grains and boundaries, where only a handful have been previously reported. The resulting images reveal an unexpectedly small and intricate patchwork of grains connected by tilt boundaries. By correlating grain imaging with scanning probe and transport measurements, we show that these grain boundaries severely weaken the mechanical strength of graphene membranes but do not as drastically alter their electrical properties. These techniques open a new window for studies on the structure, properties and control of grains and grain boundaries in graphene and other two-dimensional materials.  相似文献   
236.
The ubiquitylation of cell-cycle regulatory proteins by the large multimeric anaphase-promoting complex (APC/C) controls sister chromatid segregation and the exit from mitosis. Selection of APC/C targets is achieved through recognition of destruction motifs, predominantly the destruction (D)-box and KEN (Lys-Glu-Asn)-box. Although this process is known to involve a co-activator protein (either Cdc20 or Cdh1) together with core APC/C subunits, the structural basis for substrate recognition and ubiquitylation is not understood. Here we investigate budding yeast APC/C using single-particle electron microscopy and determine a cryo-electron microscopy map of APC/C in complex with the Cdh1 co-activator protein (APC/C(Cdh1)) bound to a D-box peptide at ~10 ? resolution. We find that a combined catalytic and substrate-recognition module is located within the central cavity of the APC/C assembled from Cdh1, Apc10--a core APC/C subunit previously implicated in substrate recognition--and the cullin domain of Apc2. Cdh1 and Apc10, identified from difference maps, create a co-receptor for the D-box following repositioning of Cdh1 towards Apc10. Using NMR spectroscopy we demonstrate specific D-box-Apc10 interactions, consistent with a role for Apc10 in directly contributing towards D-box recognition by the APC/C(Cdh1) complex. Our results rationalize the contribution of both co-activator and core APC/C subunits to D-box recognition and provide a structural framework for understanding mechanisms of substrate recognition and catalysis by the APC/C.  相似文献   
237.
Metabolite-enabled eradication of bacterial persisters by aminoglycosides   总被引:1,自引:0,他引:1  
Allison KR  Brynildsen MP  Collins JJ 《Nature》2011,473(7346):216-220
Bacterial persistence is a state in which a sub-population of dormant cells, or 'persisters', tolerates antibiotic treatment. Bacterial persisters have been implicated in biofilms and in chronic and recurrent infections. Despite this clinical relevance, there are currently no viable means for eradicating persisters. Here we show that specific metabolic stimuli enable the killing of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) persisters with aminoglycosides. This potentiation is aminoglycoside-specific, it does not rely on growth resumption and it is effective in both aerobic and anaerobic conditions. It proceeds by the generation of a proton-motive force which facilitates aminoglycoside uptake. Our results demonstrate that persisters, although dormant, are primed for metabolite uptake, central metabolism and respiration. We show that aminoglycosides can be used in combination with specific metabolites to treat E. coli and S. aureus biofilms. Furthermore, we demonstrate that this approach can improve the treatment of chronic infections in a mouse urinary tract infection model. This work establishes a strategy for eradicating bacterial persisters that is based on metabolism, and highlights the importance of the metabolic environment to antibiotic treatment.  相似文献   
238.
239.
240.
An integrated semiconductor device enabling non-optical genome sequencing   总被引:4,自引:0,他引:4  
The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号