首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39158篇
  免费   67篇
  国内免费   99篇
系统科学   201篇
丛书文集   863篇
教育与普及   111篇
理论与方法论   257篇
现状及发展   17282篇
研究方法   1627篇
综合类   18433篇
自然研究   550篇
  2013年   266篇
  2012年   560篇
  2011年   1135篇
  2010年   243篇
  2008年   701篇
  2007年   720篇
  2006年   769篇
  2005年   778篇
  2004年   677篇
  2003年   729篇
  2002年   745篇
  2001年   1126篇
  2000年   1041篇
  1999年   695篇
  1992年   654篇
  1991年   542篇
  1990年   571篇
  1989年   585篇
  1988年   596篇
  1987年   594篇
  1986年   601篇
  1985年   741篇
  1984年   574篇
  1983年   491篇
  1982年   420篇
  1981年   409篇
  1980年   533篇
  1979年   1209篇
  1978年   1038篇
  1977年   1023篇
  1976年   727篇
  1975年   773篇
  1974年   1162篇
  1973年   980篇
  1972年   1016篇
  1971年   1226篇
  1970年   1614篇
  1969年   1249篇
  1968年   1219篇
  1967年   1234篇
  1966年   1034篇
  1965年   751篇
  1964年   208篇
  1959年   445篇
  1958年   685篇
  1957年   574篇
  1956年   488篇
  1955年   414篇
  1954年   458篇
  1948年   282篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
431.
正Published online:14 March 2014óScience China Press and Springer-Verlag Berlin Heidelberg 2014Erratum to:Chin.Sci.Bull.(2014)59(5–6):528–532DOI 10.1007/s11434-013-0060-1In the original publication of this paper,the first name and the last name of the first author has been documented  相似文献   
432.
鉴于构建流行病动力学模型、探索流行病传播规律对疫情防控具有十分重要的理论意义和实际应用价值,在已有的均匀混合模型基础上,针对个体接触关系异质化越发明显,且每个个体都处在不同的接触关系中,建立了兼顾个体状态与接触追踪的动态小世界网络模型。模拟了新冠病毒在社会中的传播过程。通过对比仿真结果,说明了所建模型的合理性。在此基础上,仿真计算了网络拓扑结构与接种免疫人数占比共同作用下对新冠病毒传播的影响,分析得到群体免疫临界值。说明所建传播模型合理,接种疫苗实现群体免疫可行。  相似文献   
433.
It is now well documented that peptides with enhanced or alternative functionality (termed cryptides) can be liberated from larger, and sometimes inactive, proteins. A primary example of this phenomenon is the oxygen-transport protein hemoglobin. Aside from respiration, hemoglobin and hemoglobin-derived peptides have been associated with immune modulation, hematopoiesis, signal transduction and microbicidal activities in metazoans. Likewise, the functional equivalents to hemoglobin in invertebrates, namely hemocyanin and hemerythrin, act as potent immune effectors under certain physiological conditions. The purpose of this review is to evaluate the true extent of oxygen-transport protein dynamics in innate immunity, and to impress upon the reader the multi-functionality of these ancient proteins on the basis of their structures. In this context, erythrocyte–pathogen antibiosis and the immune competences of various erythroid cells are compared across diverse taxa.  相似文献   
434.
P4-ATPases are lipid flippases that catalyze the transport of phospholipids to create membrane phospholipid asymmetry and to initiate the biogenesis of transport vesicles. Here we show, for the first time, that lipid flippases are essential to dampen the inflammatory response and to mediate the endotoxin-induced endocytic retrieval of Toll-like receptor 4 (TLR4) in human macrophages. Depletion of CDC50A, the β-subunit that is crucial for the activity of multiple P4-ATPases, resulted in endotoxin-induced hypersecretion of proinflammatory cytokines, enhanced MAP kinase signaling and constitutive NF-κB activation. In addition, CDC50A-depleted THP-1 macrophages displayed reduced tolerance to endotoxin. Moreover, endotoxin-induced internalization of TLR4 was strongly reduced and coincided with impaired endosomal MyD88-independent signaling. The phenotype of CDC50A-depleted cells was also induced by separate knockdown of two P4-ATPases, namely ATP8B1 and ATP11A. We conclude that lipid flippases are novel elements of the innate immune response that are essential to attenuate the inflammatory response, possibly by mediating endotoxin-induced internalization of TLR4.  相似文献   
435.
436.
Interferon-alpha (IFN-α) is a potent anti-viral cytokine, critical to the host immune response against viruses. IFN-α is first produced upon viral detection by pathogen recognition receptors. Following its expression, IFN-α embarks upon a complex downstream signalling cascade called the JAK/STAT pathway. This signalling pathway results in the expression of hundreds of effector genes known as interferon stimulated genes (ISGs). These genes are the basis for an elaborate effector mechanism and ultimately, the clearance of viral infection. ISGs mark an elegant mechanism of anti-viral host defence that warrants renewed research focus in our global efforts to treat existing and emerging viruses. By understanding the mechanistic role of individual ISGs we anticipate the discovery of a new “treasure trove” of anti-viral mediators that may pave the way for more effective, targeted and less toxic anti-viral therapies. Therefore, with the aim of highlighting the value of the innate type 1 IFN response in our battle against viral infection, this review outlines both historic and recent advances in understanding the IFN-α JAK/STAT pathway, with a focus on new research discoveries relating to specific ISGs and their potential role in curing existing and future emergent viral infections.  相似文献   
437.
Fungal disease is an increasing problem in both agriculture and human health. Treatment of human fungal disease involves the use of chemical fungicides, which generally target the integrity of the fungal plasma membrane or cell wall. Chemical fungicides used for the treatment of plant disease, have more diverse mechanisms of action including inhibition of sterol biosynthesis, microtubule assembly and the mitochondrial respiratory chain. However, these treatments have limitations, including toxicity and the emergence of resistance. This has led to increased interest in the use of antimicrobial peptides for the treatment of fungal disease in both plants and humans. Antimicrobial peptides are a diverse group of molecules with differing mechanisms of action, many of which remain poorly understood. Furthermore, it is becoming increasingly apparent that stress response pathways are involved in the tolerance of fungi to both chemical fungicides and antimicrobial peptides. These signalling pathways such as the cell wall integrity and high-osmolarity glycerol pathway are triggered by stimuli, such as cell wall instability, changes in osmolarity and production of reactive oxygen species. Here we review stress signalling induced by treatment of fungi with chemical fungicides and antifungal peptides. Study of these pathways gives insight into how these molecules exert their antifungal effect and also into the mechanisms used by fungi to tolerate sub-lethal treatment by these molecules. Inactivation of stress response pathways represents a potential method of increasing the efficacy of antifungal molecules.  相似文献   
438.
The ubiquitous distribution of lysosomes and their heterogeneous protein composition reflects the versatility of these organelles in maintaining cell homeostasis and their importance in tissue differentiation and remodeling. In lysosomes, the degradation of complex, macromolecular substrates requires the synergistic action of multiple hydrolases that usually work in a stepwise fashion. This catalytic machinery explains the existence of lysosomal enzyme complexes that can be dynamically assembled and disassembled to efficiently and quickly adapt to the pool of substrates to be processed or degraded, adding extra tiers to the regulation of the individual protein components. An example of such a complex is the one composed of three hydrolases that are ubiquitously but differentially expressed: the serine carboxypeptidase, protective protein/cathepsin A (PPCA), the sialidase, neuraminidase-1 (NEU1), and the glycosidase β-galactosidase (β-GAL). Next to this ‘core’ complex, the existence of sub-complexes, which may contain additional components, and function at the cell surface or extracellularly, suggests as yet unexplored functions of these enzymes. Here we review how studies of basic biological processes in the mouse models of three lysosomal storage disorders, galactosialidosis, sialidosis, and GM1-gangliosidosis, revealed new and unexpected roles for the three respective affected enzymes, Ppca, Neu1, and β-Gal, that go beyond their canonical degradative activities. These findings have broadened our perspective on their functions and may pave the way for the development of new therapies for these lysosomal storage disorders.  相似文献   
439.
The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This “design feature” of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.  相似文献   
440.
天牛(鞘翅目Coleoptera:天牛科Cerambycidae)为树木重要的钻蛀性害虫.本文研究了伊朗西北部Arasbaran生物圈保护区及邻近地区的天牛种类,采集鉴定了5个亚科26属33种,提供了一些种类的植物寄主.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号