首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11846篇
  免费   24篇
  国内免费   43篇
系统科学   35篇
丛书文集   80篇
教育与普及   30篇
理论与方法论   42篇
现状及发展   5124篇
研究方法   565篇
综合类   5881篇
自然研究   156篇
  2013年   96篇
  2012年   191篇
  2011年   330篇
  2010年   85篇
  2009年   59篇
  2008年   190篇
  2007年   222篇
  2006年   203篇
  2005年   224篇
  2004年   208篇
  2003年   208篇
  2002年   198篇
  2001年   379篇
  2000年   365篇
  1999年   263篇
  1992年   232篇
  1991年   180篇
  1990年   204篇
  1989年   190篇
  1988年   201篇
  1987年   205篇
  1986年   160篇
  1985年   248篇
  1984年   171篇
  1983年   149篇
  1982年   166篇
  1981年   135篇
  1980年   170篇
  1979年   385篇
  1978年   291篇
  1977年   287篇
  1976年   249篇
  1975年   287篇
  1974年   309篇
  1973年   308篇
  1972年   344篇
  1971年   344篇
  1970年   428篇
  1969年   361篇
  1968年   381篇
  1967年   351篇
  1966年   319篇
  1965年   203篇
  1959年   107篇
  1958年   204篇
  1957年   137篇
  1956年   122篇
  1955年   105篇
  1954年   81篇
  1948年   83篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
High-frequency, scaled graphene transistors on diamond-like carbon   总被引:2,自引:0,他引:2  
Wu Y  Lin YM  Bol AA  Jenkins KA  Xia F  Farmer DB  Zhu Y  Avouris P 《Nature》2011,472(7341):74-78
Owing to its high carrier mobility and saturation velocity, graphene has attracted enormous attention in recent years. In particular, high-performance graphene transistors for radio-frequency (r.f.) applications are of great interest. Synthesis of large-scale graphene sheets of high quality and at low cost has been demonstrated using chemical vapour deposition (CVD) methods. However, very few studies have been performed on the scaling behaviour of transistors made from CVD graphene for r.f. applications, which hold great potential for commercialization. Here we report the systematic study of top-gated CVD-graphene r.f. transistors with gate lengths scaled down to 40 nm, the shortest gate length demonstrated on graphene r.f. devices. The CVD graphene was grown on copper film and transferred to a wafer of diamond-like carbon. Cut-off frequencies as high as 155 GHz have been obtained for the 40-nm transistors, and the cut-off frequency was found to scale as 1/(gate length). Furthermore, we studied graphene r.f. transistors at cryogenic temperatures. Unlike conventional semiconductor devices where low-temperature performance is hampered by carrier freeze-out effects, the r.f. performance of our graphene devices exhibits little temperature dependence down to 4.3 K, providing a much larger operation window than is available for conventional devices.  相似文献   
182.
Until recently, intricate details of the optical design of non-biomineralized arthropod eyes remained elusive in Cambrian Burgess-Shale-type deposits, despite exceptional preservation of soft-part anatomy in such Konservat-Lagerst?tten. The structure and development of ommatidia in arthropod compound eyes support a single origin some time before the latest common ancestor of crown-group arthropods, but the appearance of compound eyes in the arthropod stem group has been poorly constrained in the absence of adequate fossils. Here we report 2-3-cm paired eyes from the early Cambrian (approximately 515 million years old) Emu Bay Shale of South Australia, assigned to the Cambrian apex predator Anomalocaris. Their preserved visual surfaces are composed of at least 16,000 hexagonally packed ommatidial lenses (in a single eye), rivalling the most acute compound eyes in modern arthropods. The specimens show two distinct taphonomic modes, preserved as iron oxide (after pyrite) and calcium phosphate, demonstrating that disparate styles of early diagenetic mineralization can replicate the same type of extracellular tissue (that is, cuticle) within a single Burgess-Shale-type deposit. These fossils also provide compelling evidence for the arthropod affinities of anomalocaridids, push the origin of compound eyes deeper down the arthropod stem lineage, and indicate that the compound eye evolved before such features as a hardened exoskeleton. The inferred acuity of the anomalocaridid eye is consistent with other evidence that these animals were highly mobile visual predators in the water column. The existence of large, macrophagous nektonic predators possessing sharp vision--such as Anomalocaris--within the early Cambrian ecosystem probably helped to accelerate the escalatory 'arms race' that began over half a billion years ago.  相似文献   
183.
The interstellar medium of the Milky Way is multiphase, magnetized and turbulent. Turbulence in the interstellar medium produces a global cascade of random gas motions, spanning scales ranging from 100 parsecs to 1,000 kilometres (ref. 4). Fundamental parameters of interstellar turbulence such as the sonic Mach number (the speed of sound) have been difficult to determine, because observations have lacked the sensitivity and resolution to image the small-scale structure associated with turbulent motion. Observations of linear polarization and Faraday rotation in radio emission from the Milky Way have identified unusual polarized structures that often have no counterparts in the total radiation intensity or at other wavelengths, and whose physical significance has been unclear. Here we report that the gradient of the Stokes vector (Q, U), where Q and U are parameters describing the polarization state of radiation, provides an image of magnetized turbulence in diffuse, ionized gas, manifested as a complex filamentary web of discontinuities in gas density and magnetic field. Through comparison with simulations, we demonstrate that turbulence in the warm, ionized medium has a relatively low sonic Mach number, M(s)???2. The development of statistical tools for the analysis of polarization gradients will allow accurate determinations of the Mach number, Reynolds number and magnetic field strength in interstellar turbulence over a wide range of conditions.  相似文献   
184.
Consequences of climate change on the tree of life in Europe   总被引:2,自引:0,他引:2  
Many species are projected to become vulnerable to twenty-first-century climate changes, with consequent effects on the tree of life. If losses were not randomly distributed across the tree of life, climate change could lead to a disproportionate loss of evolutionary history. Here we estimate the consequences of climate change on the phylogenetic diversities of plant, bird and mammal assemblages across Europe. Using a consensus across ensembles of forecasts for 2020, 2050 and 2080 and high-resolution phylogenetic trees, we show that species vulnerability to climate change clusters weakly across phylogenies. Such phylogenetic signal in species vulnerabilities does not lead to higher loss of evolutionary history than expected with a model of random extinctions. This is because vulnerable species have neither fewer nor closer relatives than the remaining clades. Reductions in phylogenetic diversity will be greater in southern Europe, and gains are expected in regions of high latitude or altitude. However, losses will not be offset by gains and the tree of life faces a trend towards homogenization across the continent.  相似文献   
185.
Letzkus JJ  Wolff SB  Meyer EM  Tovote P  Courtin J  Herry C  Lüthi A 《Nature》2011,480(7377):331-335
Learning causes a change in how information is processed by neuronal circuits. Whereas synaptic plasticity, an important cellular mechanism, has been studied in great detail, we know much less about how learning is implemented at the level of neuronal circuits and, in particular, how interactions between distinct types of neurons within local networks contribute to the process of learning. Here we show that acquisition of associative fear memories depends on the recruitment of a disinhibitory microcircuit in the mouse auditory cortex. Fear-conditioning-associated disinhibition in auditory cortex is driven by foot-shock-mediated cholinergic activation of layer 1 interneurons, in turn generating inhibition of layer 2/3 parvalbumin-positive interneurons. Importantly, pharmacological or optogenetic block of pyramidal neuron disinhibition abolishes fear learning. Together, these data demonstrate that stimulus convergence in the auditory cortex is necessary for associative fear learning to complex tones, define the circuit elements mediating this convergence and suggest that layer-1-mediated disinhibition is an important mechanism underlying learning and information processing in neocortical circuits.  相似文献   
186.
Spin-orbit (SO) coupling--the interaction between a quantum particle's spin and its momentum--is ubiquitous in physical systems. In condensed matter systems, SO coupling is crucial for the spin-Hall effect and topological insulators; it contributes to the electronic properties of materials such as GaAs, and is important for spintronic devices. Quantum many-body systems of ultracold atoms can be precisely controlled experimentally, and would therefore seem to provide an ideal platform on which to study SO coupling. Although an atom's intrinsic SO coupling affects its electronic structure, it does not lead to coupling between the spin and the centre-of-mass motion of the atom. Here, we engineer SO coupling (with equal Rashba and Dresselhaus strengths) in a neutral atomic Bose-Einstein condensate by dressing two atomic spin states with a pair of lasers. Such coupling has not been realized previously for ultracold atomic gases, or indeed any bosonic system. Furthermore, in the presence of the laser coupling, the interactions between the two dressed atomic spin states are modified, driving a quantum phase transition from a spatially spin-mixed state (lasers off) to a phase-separated state (above a critical laser intensity). We develop a many-body theory that provides quantitative agreement with the observed location of the transition. The engineered SO coupling--equally applicable for bosons and fermions--sets the stage for the realization of topological insulators in fermionic neutral atom systems.  相似文献   
187.
188.
When an extrasolar planet passes in front of (transits) its star, its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal much more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three. Here we report Kepler spacecraft observations of a single Sun-like star, which we call Kepler-11, that reveal six transiting planets, five with orbital periods between 10 and 47?days and a sixth planet with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases. The degree of coplanarity and proximity of the planetary orbits imply energy dissipation near the end of planet formation.  相似文献   
189.
190.
Quantum metrology aims to use entanglement and other quantum resources to improve precision measurement. An interferometer using N independent particles to measure a parameter χ can achieve at best the standard quantum limit of sensitivity, δχ?∝?N(-1/2). However, using N entangled particles and exotic states, such an interferometer can in principle achieve the Heisenberg limit, δχ?∝?N(-1). Recent theoretical work has argued that interactions among particles may be a valuable resource for quantum metrology, allowing scaling beyond the Heisenberg limit. Specifically, a k-particle interaction will produce sensitivity δχ?∝?N(-k) with appropriate entangled states and δχ?∝?N(-(k-1/2)) even without entanglement. Here we demonstrate 'super-Heisenberg' scaling of δχ?∝?N(-3/2) in a nonlinear, non-destructive measurement of the magnetization of an atomic ensemble. We use fast optical nonlinearities to generate a pairwise photon-photon interaction (corresponding to k = 2) while preserving quantum-noise-limited performance. We observe super-Heisenberg scaling over two orders of magnitude in N, limited at large numbers by higher-order nonlinear effects, in good agreement with theory. For a measurement of limited duration, super-Heisenberg scaling allows the nonlinear measurement to overtake in sensitivity a comparable linear measurement with the same number of photons. In other situations, however, higher-order nonlinearities prevent this crossover from occurring, reflecting the subtle relationship between scaling and sensitivity in nonlinear systems. Our work shows that interparticle interactions can improve sensitivity in a quantum-limited measurement, and experimentally demonstrates a new resource for quantum metrology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号