首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49834篇
  免费   116篇
  国内免费   206篇
系统科学   269篇
丛书文集   1078篇
教育与普及   107篇
理论与方法论   281篇
现状及发展   22771篇
研究方法   1899篇
综合类   23059篇
自然研究   692篇
  2013年   385篇
  2012年   654篇
  2011年   1380篇
  2010年   285篇
  2008年   861篇
  2007年   918篇
  2006年   943篇
  2005年   922篇
  2004年   874篇
  2003年   862篇
  2002年   886篇
  2001年   1447篇
  2000年   1337篇
  1999年   915篇
  1992年   884篇
  1991年   704篇
  1990年   762篇
  1989年   780篇
  1988年   753篇
  1987年   806篇
  1986年   776篇
  1985年   945篇
  1984年   745篇
  1983年   637篇
  1982年   570篇
  1981年   580篇
  1980年   744篇
  1979年   1537篇
  1978年   1331篇
  1977年   1313篇
  1976年   997篇
  1975年   1065篇
  1974年   1488篇
  1973年   1291篇
  1972年   1342篇
  1971年   1576篇
  1970年   2049篇
  1969年   1546篇
  1968年   1514篇
  1967年   1540篇
  1966年   1304篇
  1965年   940篇
  1964年   275篇
  1959年   535篇
  1958年   870篇
  1957年   656篇
  1956年   561篇
  1955年   488篇
  1954年   545篇
  1948年   326篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
982.
The evolutionarily conserved SLX4 protein, a key regulator of nucleases, is critical for DNA damage response. SLX4 nuclease complexes mediate repair during replication and can also resolve Holliday junctions formed during homologous recombination. Here we describe the phenotype of the Btbd12 knockout mouse, the mouse ortholog of SLX4, which recapitulates many key features of the human genetic illness Fanconi anemia. Btbd12-deficient animals are born at sub-Mendelian ratios, have greatly reduced fertility, are developmentally compromised and are prone to blood cytopenias. Btbd12(-/-) cells prematurely senesce, spontaneously accumulate damaged chromosomes and are particularly sensitive to DNA crosslinking agents. Genetic complementation reveals a crucial requirement for Btbd12 (also known as Slx4) to interact with the structure-specific endonuclease Xpf-Ercc1 to promote crosslink repair. The Btbd12 knockout mouse therefore establishes a disease model for Fanconi anemia and genetically links a regulator of nuclease incision complexes to the Fanconi anemia DNA crosslink repair pathway.  相似文献   
983.
The Alzheimer Disease Genetics Consortium (ADGC) performed a genome-wide association study of late-onset Alzheimer disease using a three-stage design consisting of a discovery stage (stage 1) and two replication stages (stages 2 and 3). Both joint analysis and meta-analysis approaches were used. We obtained genome-wide significant results at MS4A4A (rs4938933; stages 1 and 2, meta-analysis P (P(M)) = 1.7 × 10(-9), joint analysis P (P(J)) = 1.7 × 10(-9); stages 1, 2 and 3, P(M) = 8.2 × 10(-12)), CD2AP (rs9349407; stages 1, 2 and 3, P(M) = 8.6 × 10(-9)), EPHA1 (rs11767557; stages 1, 2 and 3, P(M) = 6.0 × 10(-10)) and CD33 (rs3865444; stages 1, 2 and 3, P(M) = 1.6 × 10(-9)). We also replicated previous associations at CR1 (rs6701713; P(M) = 4.6 × 10(-10), P(J) = 5.2 × 10(-11)), CLU (rs1532278; P(M) = 8.3 × 10(-8), P(J) = 1.9 × 10(-8)), BIN1 (rs7561528; P(M) = 4.0 × 10(-14), P(J) = 5.2 × 10(-14)) and PICALM (rs561655; P(M) = 7.0 × 10(-11), P(J) = 1.0 × 10(-10)), but not at EXOC3L2, to late-onset Alzheimer's disease susceptibility.  相似文献   
984.
US maize yield has increased eight-fold in the past 80 years, with half of the gain attributed to selection by breeders. During this time, changes in maize leaf angle and size have altered plant architecture, allowing more efficient light capture as planting density has increased. Through a genome-wide association study (GWAS) of the maize nested association mapping panel, we determined the genetic basis of important leaf architecture traits and identified some of the key genes. Overall, we demonstrate that the genetic architecture of the leaf traits is dominated by small effects, with little epistasis, environmental interaction or pleiotropy. In particular, GWAS results show that variations at the liguleless genes have contributed to more upright leaves. These results demonstrate that the use of GWAS with specially designed mapping populations is effective in uncovering the basis of key agronomic traits.  相似文献   
985.
Thoracic aortic aneurysms and dissections are a main feature of connective tissue disorders, such as Marfan syndrome and Loeys-Dietz syndrome. We delineated a new syndrome presenting with aneurysms, dissections and tortuosity throughout the arterial tree in association with mild craniofacial features and skeletal and cutaneous anomalies. In contrast with other aneurysm syndromes, most of these affected individuals presented with early-onset osteoarthritis. We mapped the genetic locus to chromosome 15q22.2-24.2 and show that the disease is caused by mutations in SMAD3. This gene encodes a member of the TGF-β pathway that is essential for TGF-β signal transmission. SMAD3 mutations lead to increased aortic expression of several key players in the TGF-β pathway, including SMAD3. Molecular diagnosis will allow early and reliable identification of cases and relatives at risk for major cardiovascular complications. Our findings endorse the TGF-β pathway as the primary pharmacological target for the development of new treatments for aortic aneurysms and osteoarthritis.  相似文献   
986.
Most preneoplastic lesions are quiescent and do not progress to form overt tumors. It has been proposed that oncogenic stress activates the DNA damage response and the key tumor suppressor p53, which prohibits tumor growth. However, the molecular pathways by which cells sense a premalignant state in vivo are largely unknown. Here we report that tissue-specific inactivation of the stress signaling kinase MKK7 in KRas(G12D)-driven lung carcinomas and NeuT-driven mammary tumors markedly accelerates tumor onset and reduces overall survival. Mechanistically, MKK7 acts through the kinases JNK1 and JNK2, and this signaling pathway directly couples oncogenic and genotoxic stress to the stability of p53, which is required for cell cycle arrest and suppression of epithelial cancers. These results show that MKK7 functions as a major tumor suppressor in lung and mammary cancer in mouse and identify MKK7 as a vital molecular sensor to set a cellular anti-cancer barrier.  相似文献   
987.
We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to hemoglobinopathies and thalassemia and implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories. A total of 1,941 unique genetic variants in 37 genes, encoding globins and other erythroid proteins, are currently documented in these databases, with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants, leading to a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The principles established here will serve as a model for other systems and for the analysis of other common and/or complex human genetic diseases.  相似文献   
988.
Canalization, also known as developmental robustness, describes an organism's ability to produce the same phenotype despite genotypic variations and environmental influences. In Drosophila, Hsp90, the trithorax-group proteins and transposon silencing have been previously implicated in canalization. Despite this, the molecular mechanism underlying canalization remains elusive. Here using a Drosophila eye-outgrowth assay sensitized by the dominant Kr(irregular facets-1)(Kr(If-1)) allele, we show that the Piwi-interacting RNA (piRNA) pathway, but not the short interfering RNA or micro RNA pathway, is involved in canalization. Furthermore, we isolated a protein complex composed of Hsp90, Piwi and Hop, the Hsp70/Hsp90 organizing protein homolog, and we demonstrated the function of this complex in canalization. Our data indicate that Hsp90 and Hop regulate the piRNA pathway through Piwi to mediate canalization. Moreover, they point to epigenetic silencing of the expression of existing genetic variants and the suppression of transposon-induced new genetic variation as two major mechanisms underlying piRNA pathway-mediated canalization.  相似文献   
989.
990.
3MC syndrome has been proposed as a unifying term encompassing the overlapping Carnevale, Mingarelli, Malpuech and Michels syndromes. These rare autosomal recessive disorders exhibit a spectrum of developmental features, including characteristic facial dysmorphism, cleft lip and/or palate, craniosynostosis, learning disability and genital, limb and vesicorenal anomalies. Here we studied 11 families with 3MC syndrome and identified two mutated genes, COLEC11 and MASP1, both of which encode proteins in the lectin complement pathway (collectin kidney 1 (CL-K1) and MASP-1 and MASP-3, respectively). CL-K1 is highly expressed in embryonic murine craniofacial cartilage, heart, bronchi, kidney and vertebral bodies. Zebrafish morphants for either gene develop pigmentary defects and severe craniofacial abnormalities. Finally, we show that CL-K1 serves as a guidance cue for neural crest cell migration. Together, these findings demonstrate a role for complement pathway factors in fundamental developmental processes and in the etiology of 3MC syndrome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号