首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28880篇
  免费   80篇
  国内免费   158篇
系统科学   139篇
丛书文集   499篇
教育与普及   42篇
理论与方法论   100篇
现状及发展   13456篇
研究方法   1278篇
综合类   13207篇
自然研究   397篇
  2013年   269篇
  2012年   412篇
  2011年   810篇
  2010年   169篇
  2008年   524篇
  2007年   576篇
  2006年   576篇
  2005年   537篇
  2004年   538篇
  2003年   498篇
  2002年   499篇
  2001年   937篇
  2000年   866篇
  1999年   615篇
  1992年   595篇
  1991年   414篇
  1990年   486篇
  1989年   494篇
  1988年   460篇
  1987年   546篇
  1986年   474篇
  1985年   597篇
  1984年   484篇
  1983年   364篇
  1982年   340篇
  1981年   367篇
  1980年   462篇
  1979年   890篇
  1978年   757篇
  1977年   740篇
  1976年   611篇
  1975年   636篇
  1974年   845篇
  1973年   756篇
  1972年   779篇
  1971年   840篇
  1970年   1073篇
  1969年   813篇
  1968年   820篇
  1967年   795篇
  1966年   681篇
  1965年   472篇
  1964年   156篇
  1959年   249篇
  1958年   440篇
  1957年   292篇
  1956年   259篇
  1955年   246篇
  1954年   239篇
  1948年   162篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The ability to discriminate between different chemical stimuli is crucial for food detection, spatial orientation and other adaptive behaviours in animals. In the nematode Caenorhabditis elegans, spatial orientation in gradients of soluble chemoattractants (chemotaxis) is controlled mainly by a single pair of chemosensory neurons. These two neurons, ASEL and ASER, are left-right homologues in terms of the disposition of their somata and processes, morphology of specialized sensory endings, synaptic partners and expression profile of many genes. However, recent gene-expression studies have revealed unexpected asymmetries between ASEL and ASER. ASEL expresses the putative receptor guanylyl cyclase genes gcy-6 and gcy-7, whereas ASER expresses gcy-5 (ref. 4). In addition, only ASEL expresses the homeobox gene lim-6, an orthologue of the human LMX1 subfamily of homeobox genes. Here we show, using laser ablation of neurons and whole-cell patch-clamp electrophysiology, that the asymmetries between ASEL and ASER extend to the functional level. ASEL is primarily sensitive to sodium, whereas ASER is primarily sensitive to chloride and potassium. Furthermore, we find that lim-6 is required for this functional asymmetry and for the ability to distinguish sodium from chloride. Thus, a homeobox gene increases the representational capacity of the nervous system by establishing asymmetric functions in a bilaterally symmetrical neuron pair.  相似文献   
992.
E W Hudson  K M Lang  V Madhavan  S H Pan  H Eisaki  S Uchida  J C Davis 《Nature》2001,411(6840):920-924
Magnetic interactions and magnetic impurities are destructive to superconductivity in conventional superconductors. By contrast, in some unconventional macroscopic quantum systems (such as superfluid 3He and superconducting UGe2), the superconductivity (or superfluidity) is actually mediated by magnetic interactions. A magnetic mechanism has also been proposed for high-temperature superconductivity. Within this context, the fact that magnetic Ni impurity atoms have a weaker effect on superconductivity than non-magnetic Zn atoms in the high-Tc superconductors has been put forward as evidence supporting a magnetic mechanism. Here we use scanning tunnelling microscopy to determine directly the influence of individual Ni atoms on the local electronic structure of Bi2Sr2CaCu2O8+delta. At each Ni site we observe two d-wave impurity states of apparently opposite spin polarization, whose existence indicates that Ni retains a magnetic moment in the superconducting state. However, analysis of the impurity-state energies shows that quasiparticle scattering at Ni is predominantly non-magnetic. Furthermore, we show that the superconducting energy gap and correlations are unimpaired at Ni. This is in strong contrast to the effects of non-magnetic Zn impurities, which locally destroy superconductivity. These results are consistent with predictions for impurity atom phenomena derived from a magnetic mechanism.  相似文献   
993.
A Grigorenko  S Bending  T Tamegai  S Ooi  M Henini 《Nature》2001,414(6865):728-731
Magnetic flux penetrates isotropic type II superconductors in flux-quantized vortices, which arrange themselves into a lattice structure that is independent of the direction of the applied field. In extremely anisotropic high-transition-temperature (high-Tc) superconductors, a lattice of stacks of circular 'pancake' vortices forms when a magnetic field is applied perpendicular to the copper oxide layers, while an orthogonal elongated lattice of elliptical Josephson vortices forms when the applied field is parallel to the layers. Here we report that when a tilted magnetic field is applied to single crystals of Bi2Sr2CaCu2O8+delta, these lattices can interact to form a new state of vortex matter in which all stacks of pancake vortices intersect the Josephson vortices. The sublattice of Josephson vortices can therefore be used to manipulate the sublattice of pancake vortices. This result explains the suppression of irreversible magnetization by in-plane fields as seen in Bi2Sr2CaCu2O8+delta crystals, a hitherto mysterious observation. The ability to manipulate sublattices could be important for flux-logic devices, where a 'bit' might be represented by a pancake vortex stack, and the problem of vortex positioning is overcome through sublattice interactions. This also enables the development of flux transducers and amplifiers, considerably broadening the scope for applications of anisotropic high-Tc superconductors.  相似文献   
994.
Gene transfection is an indispensable approach for studying gene function since it provides important information on gain- and/or loss-of-function. Chick embryos are also extensively employed for studying bio- logical function since they are easily accessible and can be maintained alive after manipulation. The combination of both techniques presents a powerful approach to under- standing how genes regulate embryo development. Fur- thermore, combining these approaches with tissue transplant techniques make even more attractive for elu- cidate gene function. Electroporation, employing parallelly fashioned electrodes, has been widely used in chick embryos. However, experimenters have been frustrated by unsuccessfully transfection in some embryonic tissue of interest because the electrodes were improperly positioned.We presently demonstrated the different patterns of orga- nizing and positioning the electrodes, in combination with tissue transplantation, to efficiently and specifically trans- fect the chick embryonic head, trunk neural tube, heart tube, somites and neural crest cells with the GFP reporter gene.  相似文献   
995.
Beneficiation of Malaysian iron ore is becoming necessary as iron resources are depleting. However, the upgrading process is challenging because of the weak magnetic properties of Malaysian iron ore. In this study, bio-char derived from oil palm empty fruit bunch (EFB) was utilized as an energy source for reduction roasting. Mixtures of Malaysian iron ore and the bio-char were pressed into briquettes and subjected to reduction roasting processes at 873–1173 K. The extent of reduction was estimated on the basis of mass loss, and the magnetization of samples was measured using a vibrating sample magnetometer (VSM). When reduced at 873 K, the original goethite-rich ore was converted into hematite. An increase in temperature to 1073 K caused a significant conversion of hematite into magnetite and enhanced the magnetic susceptibility and saturation magnetization of samples. The magnetic properties diminished at 1173 K as the iron ore was partially reduced to wustite. This reduction roasting by using the bio-char can assist in upgrading the iron ore by improving its magnetic properties.  相似文献   
996.
一种基于聚类的粗糙集连续属性的离散化算法   总被引:4,自引:0,他引:4  
粗糙集理论是一种新的处理不精确、不完全与不相容知识的数学工具。粗糙集理论只能对离散属性进行处理,而不能处理连续属性。中针对这一缺陷,利用连续数值属性有序性的性质和统计方差理论,提出了一种基于聚类的连续属性离散化算法。运用典型数据将本算法与现有方法进行了比较分析,得到了满意的结果。  相似文献   
997.
Vortices occur naturally in a wide range of gases and fluids, from macroscopic to microscopic scales. In Bose-Einstein condensates of dilute atomic gases, superfluid helium and superconductors, the existence of vortices is a consequence of the quantum nature of the system. Quantized vortices of supercurrent are generated by magnetic flux penetrating the material, and play a key role in determining the material properties and the performance of superconductor-based devices. At high temperatures the dynamics of such vortices are essentially classical, while at low temperatures previous experiments have suggested collective quantum dynamics. However, the question of whether vortex tunnelling occurs at low temperatures has been addressed only for large collections of vortices. Here we study the quantum dynamics of an individual vortex in a superconducting Josephson junction. By measuring the statistics of the vortex escape from a controllable pinning potential, we demonstrate the existence of quantized levels of the vortex energy within the trapping potential well and quantum tunnelling of the vortex through the pinning barrier.  相似文献   
998.
The role of stomata in sensing and driving environmental change   总被引:15,自引:0,他引:15  
Hetherington AM  Woodward FI 《Nature》2003,424(6951):901-908
Stomata, the small pores on the surfaces of leaves and stalks, regulate the flow of gases in and out of leaves and thus plants as a whole. They adapt to local and global changes on all timescales from minutes to millennia. Recent data from diverse fields are establishing their central importance to plant physiology, evolution and global ecology. Stomatal morphology, distribution and behaviour respond to a spectrum of signals, from intracellular signalling to global climatic change. Such concerted adaptation results from a web of control systems, reminiscent of a 'scale-free' network, whose untangling requires integrated approaches beyond those currently used.  相似文献   
999.
Schaak RE  Klimczuk T  Foo ML  Cava RJ 《Nature》2003,424(6948):527-529
The microscopic origin of superconductivity in the high-transition-temperature (high-T(c)) copper oxides remains the subject of active inquiry; several of their electronic characteristics are well established as universal to all the known materials, forming the experimental foundation that all theories must address. The most fundamental of those characteristics, for both the copper oxides and other superconductors, is the dependence of the superconducting T(c) on the degree of electronic band filling. The recent report of superconductivity near 4 K in the layered sodium cobalt oxyhydrate, Na(0.35)CoO2*1.3H2O, is of interest owing to both its triangular cobalt-oxygen lattice and its generally analogous chemical and structural relationships to the copper oxide superconductors. Here we show that the superconducting T(c) of this compound displays the same kind of behaviour on chemical doping that is observed in the high-T(c) copper oxides. Specifically, the optimal superconducting T(c) occurs in a narrow range of sodium concentrations (and therefore electron concentrations) and decreases for both underdoped and overdoped materials, as observed in the phase diagram of the copper oxide superconductors. The analogy is not perfect, however, suggesting that Na(x)CoO2*1.3H2O, with its triangular lattice geometry and special magnetic characteristics, may provide insights into systems where coupled charge and spin dynamics play an essential role in leading to superconductivity.  相似文献   
1000.
Single-nanowire electrically driven lasers   总被引:19,自引:0,他引:19  
Duan X  Huang Y  Agarwal R  Lieber CM 《Nature》2003,421(6920):241-245
Electrically driven semiconductor lasers are used in technologies ranging from telecommunications and information storage to medical diagnostics and therapeutics. The success of this class of lasers is due in part to well-developed planar semiconductor growth and processing, which enables reproducible fabrication of integrated, electrically driven devices. Yet this approach to device fabrication is also costly and difficult to integrate directly with other technologies such as silicon microelectronics. To overcome these issues for future applications, there has been considerable interest in using organic molecules, polymers, and inorganic nanostructures for lasers, because these materials can be fashioned into devices by chemical processing. Indeed, amplified stimulated emission and lasing have been reported for optically pumped organic systems and, more recently, inorganic nanocrystals and nanowires. However, electrically driven lasing, which is required in most applications, has met with several difficulties in organic systems, and has not been addressed for assembled nanocrystals or nanowires. Here we investigate the feasibility of achieving electrically driven lasing from individual nanowires. Optical and electrical measurements made on single-crystal cadmium sulphide nanowires show that these structures can function as Fabry-Perot optical cavities with mode spacing inversely related to the nanowire length. Investigations of optical and electrical pumping further indicate a threshold for lasing as characterized by optical modes with instrument-limited linewidths. Electrically driven nanowire lasers, which might be assembled in arrays capable of emitting a wide range of colours, could improve existing applications and suggest new opportunities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号