首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47304篇
  免费   144篇
  国内免费   222篇
系统科学   242篇
丛书文集   857篇
教育与普及   74篇
理论与方法论   175篇
现状及发展   21873篇
研究方法   1826篇
综合类   21852篇
自然研究   771篇
  2013年   375篇
  2012年   654篇
  2011年   1409篇
  2010年   286篇
  2008年   806篇
  2007年   941篇
  2006年   907篇
  2005年   897篇
  2004年   956篇
  2003年   815篇
  2002年   844篇
  2001年   1355篇
  2000年   1303篇
  1999年   925篇
  1992年   872篇
  1991年   642篇
  1990年   727篇
  1989年   725篇
  1988年   690篇
  1987年   757篇
  1986年   754篇
  1985年   955篇
  1984年   731篇
  1983年   591篇
  1982年   545篇
  1981年   576篇
  1980年   703篇
  1979年   1497篇
  1978年   1233篇
  1977年   1175篇
  1976年   961篇
  1975年   984篇
  1974年   1379篇
  1973年   1199篇
  1972年   1260篇
  1971年   1389篇
  1970年   1843篇
  1969年   1454篇
  1968年   1363篇
  1967年   1343篇
  1966年   1201篇
  1965年   867篇
  1964年   304篇
  1959年   471篇
  1958年   847篇
  1957年   597篇
  1956年   491篇
  1955年   452篇
  1954年   496篇
  1948年   318篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
861.
Walker-Warburg syndrome (WWS) is an autosomal recessive multisystem disorder characterized by complex eye and brain abnormalities with congenital muscular dystrophy (CMD) and aberrant a-dystroglycan glycosylation. Here we report mutations in the ISPD gene (encoding isoprenoid synthase domain containing) as the second most common cause of WWS. Bacterial IspD is a nucleotidyl transferase belonging to a large glycosyltransferase family, but the role of the orthologous protein in chordates is obscure to date, as this phylum does not have the corresponding non-mevalonate isoprenoid biosynthesis pathway. Knockdown of ispd in zebrafish recapitulates the human WWS phenotype with hydrocephalus, reduced eye size, muscle degeneration and hypoglycosylated a-dystroglycan. These results implicate ISPD in a-dystroglycan glycosylation in maintaining sarcolemma integrity in vertebrates.  相似文献   
862.
Aging is associated with reductions in hippocampal volume that are accelerated by Alzheimer's disease and vascular risk factors. Our genome-wide association study (GWAS) of dementia-free persons (n = 9,232) identified 46 SNPs at four loci with P values of <4.0 × 10(-7). In two additional samples (n = 2,318), associations were replicated at 12q14 within MSRB3-WIF1 (discovery and replication; rs17178006; P = 5.3 × 10(-11)) and at 12q24 near HRK-FBXW8 (rs7294919; P = 2.9 × 10(-11)). Remaining associations included one SNP at 2q24 within DPP4 (rs6741949; P = 2.9 × 10(-7)) and nine SNPs at 9p33 within ASTN2 (rs7852872; P = 1.0 × 10(-7)); along with the chromosome 12 associations, these loci were also associated with hippocampal volume (P < 0.05) in a third younger, more heterogeneous sample (n = 7,794). The SNP in ASTN2 also showed suggestive association with decline in cognition in a largely independent sample (n = 1,563). These associations implicate genes related to apoptosis (HRK), development (WIF1), oxidative stress (MSR3B), ubiquitination (FBXW8) and neuronal migration (ASTN2), as well as enzymes targeted by new diabetes medications (DPP4), indicating new genetic influences on hippocampal size and possibly the risk of cognitive decline and dementia.  相似文献   
863.
Enucleated oocytes have the distinctive ability to reprogram somatic nuclei back to totipotency. Here, we investigate genome-scale DNA methylation patterns after nuclear transfer and compare them to the dynamics at fertilization. We identify specific targets for DNA demethylation after nuclear transfer, such as germline-associated promoters, as well as unique limitations that include certain repetitive element classes.  相似文献   
864.
865.
Loeys-Dietz syndrome (LDS) associates with a tissue signature for high transforming growth factor (TGF)-β signaling but is often caused by heterozygous mutations in genes encoding positive effectors of TGF-β signaling, including either subunit of the TGF-β receptor or SMAD3, thereby engendering controversy regarding the mechanism of disease. Here, we report heterozygous mutations or deletions in the gene encoding the TGF-β2 ligand for a phenotype within the LDS spectrum and show upregulation of TGF-β signaling in aortic tissue from affected individuals. Furthermore, haploinsufficient Tgfb2(+/-) mice have aortic root aneurysm and biochemical evidence of increased canonical and noncanonical TGF-β signaling. Mice that harbor both a mutant Marfan syndrome (MFS) allele (Fbn1(C1039G/+)) and Tgfb2 haploinsufficiency show increased TGF-β signaling and phenotypic worsening in association with normalization of TGF-β2 expression and high expression of TGF-β1. Taken together, these data support the hypothesis that compensatory autocrine and/or paracrine events contribute to the pathogenesis of TGF-β-mediated vasculopathies.  相似文献   
866.
Human non-small cell lung cancers (NSCLCs) with activating mutations in EGFR frequently respond to treatment with EGFR-targeted tyrosine kinase inhibitors (TKIs), such as erlotinib, but responses are not durable, as tumors acquire resistance. Secondary mutations in EGFR (such as T790M) or upregulation of the MET kinase are found in over 50% of resistant tumors. Here, we report increased activation of AXL and evidence for epithelial-to-mesenchymal transition (EMT) in multiple in vitro and in vivo EGFR-mutant lung cancer models with acquired resistance to erlotinib in the absence of the EGFR p.Thr790Met alteration or MET activation. Genetic or pharmacological inhibition of AXL restored sensitivity to erlotinib in these tumor models. Increased expression of AXL and, in some cases, of its ligand GAS6 was found in EGFR-mutant lung cancers obtained from individuals with acquired resistance to TKIs. These data identify AXL as a promising therapeutic target whose inhibition could prevent or overcome acquired resistance to EGFR TKIs in individuals with EGFR-mutant lung cancer.  相似文献   
867.
868.
Leber congenital amaurosis (LCA) is a blinding retinal disease that presents within the first year after birth. Using exome sequencing, we identified mutations in the nicotinamide adenine dinucleotide (NAD) synthase gene NMNAT1 encoding nicotinamide mononucleotide adenylyltransferase 1 in eight families with LCA, including the family in which LCA was originally linked to the LCA9 locus. Notably, all individuals with NMNAT1 mutations also have macular colobomas, which are severe degenerative entities of the central retina (fovea) devoid of tissue and photoreceptors. Functional assays of the proteins encoded by the mutant alleles identified in our study showed that the mutations reduce the enzymatic activity of NMNAT1 in NAD biosynthesis and affect protein folding. Of note, recent characterization of the slow Wallerian degeneration (Wld(s)) mouse model, in which prolonged axonal survival after injury is observed, identified NMNAT1 as a neuroprotective protein when ectopically expressed. Our findings identify a new disease mechanism underlying LCA and provide the first link between endogenous NMNAT1 dysfunction and a human nervous system disorder.  相似文献   
869.
The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9   总被引:1,自引:1,他引:0  
ADAM17/TACE is a metalloproteinase responsible for the shedding of the proinflammatory cytokine TNF-α and many other cell surface proteins involved in development, cell adhesion, migration, differentiation, and proliferation. Despite the important biological function of ADAM17, the mechanisms of regulation of its metalloproteinase activity remain largely unknown. We report here that the tetraspanin CD9 and ADAM17 partially co-localize on the surface of endothelial and monocytic cells. In situ proximity ligation, co-immunoprecipitation, crosslinking, and pull-down experiments collectively demonstrate a direct association between these molecules. Functional studies reveal that treatment with CD9-specific antibodies or neoexpression of CD9 exert negative regulatory effects on ADAM17 sheddase activity. Conversely, CD9 silencing increased the activity of ADAM17 against its substrates TNF-α and ICAM-1. Taken together, our results show that CD9 associates with ADAM17 and, through this interaction, negatively regulates the sheddase activity of ADAM17.  相似文献   
870.
Cardiomyocytes use glucose as well as fatty acids for ATP production. These substrates are transported into the cell by glucose transporter 4 (GLUT4) and the fatty acid transporter CD36. Besides being located at the sarcolemma, GLUT4 and CD36 are stored in intracellular compartments. Raised plasma insulin concentrations and increased cardiac work will stimulate GLUT4 as well as CD36 to translocate to the sarcolemma. As so far studied, signaling pathways that regulate GLUT4 translocation similarly affect CD36 translocation. During the development of insulin resistance and type 2 diabetes, CD36 becomes permanently localized at the sarcolemma, whereas GLUT4 internalizes. This juxtaposed positioning of GLUT4 and CD36 is important for aberrant substrate uptake in the diabetic heart: chronically increased fatty acid uptake at the expense of glucose. To explain the differences in subcellular localization of GLUT4 and CD36 in type 2 diabetes, recent research has focused on the role of proteins involved in trafficking of cargo between subcellular compartments. Several of these proteins appear to be similarly involved in both GLUT4 and CD36 translocation. Others, however, have different roles in either GLUT4 or CD36 translocation. These trafficking components, which are differently involved in GLUT4 or CD36 translocation, may be considered novel targets for the development of therapies to restore the imbalanced substrate utilization that occurs in obesity, insulin resistance and diabetic cardiomyopathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号