首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45608篇
  免费   166篇
  国内免费   210篇
系统科学   382篇
丛书文集   924篇
教育与普及   87篇
理论与方法论   154篇
现状及发展   20936篇
研究方法   1698篇
综合类   21090篇
自然研究   713篇
  2013年   390篇
  2012年   621篇
  2011年   1348篇
  2010年   295篇
  2008年   773篇
  2007年   856篇
  2006年   876篇
  2005年   849篇
  2004年   829篇
  2003年   795篇
  2002年   728篇
  2001年   1325篇
  2000年   1274篇
  1999年   830篇
  1992年   811篇
  1991年   643篇
  1990年   722篇
  1989年   694篇
  1988年   683篇
  1987年   755篇
  1986年   697篇
  1985年   905篇
  1984年   709篇
  1983年   589篇
  1982年   510篇
  1981年   553篇
  1980年   703篇
  1979年   1394篇
  1978年   1184篇
  1977年   1182篇
  1976年   951篇
  1975年   1007篇
  1974年   1356篇
  1973年   1193篇
  1972年   1246篇
  1971年   1409篇
  1970年   1802篇
  1969年   1369篇
  1968年   1350篇
  1967年   1319篇
  1966年   1155篇
  1965年   827篇
  1964年   267篇
  1959年   471篇
  1958年   770篇
  1957年   553篇
  1956年   496篇
  1955年   443篇
  1954年   474篇
  1948年   321篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Anandamide is a lipid messenger that carries out a wide variety of biological functions. It has been suggested that anandamide accumulation involves binding to a saturable cellular component. To identify the structure(s) involved in this process, we analyzed the intracellular distribution of both biotinylated and radiolabeled anandamide, providing direct evidence that lipid droplets, also known as adiposomes, constitute a dynamic reservoir for the sequestration of anandamide. In addition, confocal microscopy and biochemical studies revealed that the anandamide-hydrolase is also spatially associated with lipid droplets, and that cells with a larger adiposome compartment have an enhanced catabolism of anandamide. Overall, these findings suggest that adiposomes may have a critical role in accumulating anandamide, possibly by connecting plasma membrane to internal organelles along the metabolic route of this endocannabinoid. S. Oddi, F. Fezza: These authors contributed equally to the study.  相似文献   
982.
Human eosinophil cationic protein (ECP)/ ribonuclease 3 (RNase 3) is a protein secreted from the secondary granules of activated eosinophils. Specific properties of ECP contribute to its cytotoxic activities associated with defense mechanisms. In this work the ECP cytotoxic activity on eukaryotic cell lines is analyzed. The ECP effects begin with its binding and aggregation to the cell surface, altering the cell membrane permeability and modifying the cell ionic equilibrium. No internalization of the protein is observed. These signals induce cell-specific morphological and biochemical changes such as chromatin condensation, reversion of membrane asymmetry, reactive oxygen species production and activation of caspase-3-like activity and, eventually, cell death. However, the ribonuclease activity component of ECP is not involved in this process as no RNA degradation is observed. In summary, the cytotoxic effect of ECP is attained through a mechanism different from that of other cytotoxic RNases and may be related with the ECP accumulation associated with the inflammatory processes, in which eosinophils are present. Received 26 October 2007; accepted 23 November 2007  相似文献   
983.
Inhibition of gastric acid secretion is the mainstay of the treatment of gastroesophageal reflux disease and peptic ulceration; therapies to inhibit acid are among the best-selling drugs worldwide. Highly effective agents targeting the histamine H2 receptor were first identified in the 1970s. These were followed by the development of irreversible inhibitors of the parietal cell hydrogen-potassium ATPase (the proton pump inhibitors) that inhibit acid secretion much more effectively. Reviewed here are the chemistry, biological targets and pharmacology of these drugs, with reference to their current and evolving clinical utilities. Future directions in the development of acid inhibitory drugs include modifications of current agents and the emergence of a novel class of agents, the acid pump antagonists. Received 30 May 2007; received after revision 15 August 2007; accepted 13 September 2007  相似文献   
984.
Endocrine-dependent expression of circadian clock genes in insects   总被引:1,自引:0,他引:1  
Current models state that insect peripheral oscillators are directly responsive to light, while mammalian peripheral clock genes are coordinated by a master clock in the brain via intermediate factors, possibly hormonal. We show that the expression levels of two circadian clock genes, period (per) and Par Domain Protein 1 (Pdp1) in the peripheral tissue of an insect model species, the linden bug Pyrrhocoris apterus, are inversely affected by contrasting photoperiods. The effect of photoperiod on per and Pdp1 mRNA levels was found to be mediated by the corpus allatum, an endocrine gland producing juvenile hormone. Our results provide the first experimental evidence for the effect of an endocrine gland on circadian clock gene expression in insects. Received 31 October 2007; received after revision 7 January 2008; accepted 9 January 2008 D. Dolezel, L. Zdechovanova: These authors contributed equally to this work.  相似文献   
985.
Beside its role as a neurotransmitter in the central nervous system, serotonin appears to be a central physiologic mediator of many gastrointestinal (GI) functions and a mediator of the brain-gut connection. By acting directly and via modulation of the enteric nervous system, serotonin has numerous effects on the GI tract. The main gut disturbances in which serotonin is involved are acute chemotherapy-induced nausea and vomiting, carcinoid syndrome and irritable bowel syndrome. Serotonin also has mitogenic properties. Platelet-derived serotonin is involved in liver regeneration after partial hepatectomy. In diseased liver, serotonin may play a crucial role in the progression of hepatic fibrosis and the pathogenesis of steatohepatitis. Better understanding of the role of the serotonin receptor subtypes and serotonin mechanisms of action in the liver and gut may open new therapeutic strategies in hepato-gastrointestinal diseases. Received 15 August 2007; received after revision 1 November 2007; accepted 5 November 2007  相似文献   
986.
Cajal bodies (CBs) and Gems are nuclear domains that contain factors responsible for spliceosomal small nuclear ribonucleoprotein (snRNP) biogenesis. The marker protein for CBs is coilin. In addition to snRNPs, coilin and other factors, canonical CBs contain the survivor of motor neuron protein (SMN). SMN can also localize to Gems. Considering the important role that coilin plays in the formation and composition of CBs, we tested the splicing efficiency of several cell lines that vary in regards to coilin level and modification using an artificial reporter substrate. We found that cells with both hypomethylated coilin and Gems are more efficient at reporter splicing compared to cells in which SMN localizes to CBs. In contrast, coilin reduction, which induces Gem formation, decreases cell proliferation and artificial reporter splicing. These findings demonstrate that coilin modifications or levels impact artificial reporter splicing, possibly by influencing snRNP biogenesis. Received 26 December 2007; received after revision 5 February 2008; accepted 7 February 2008  相似文献   
987.
Myosin V from head to tail   总被引:1,自引:1,他引:0  
Myosin V (myoV), a processive cargo transporter, has arguably been the most well-studied unconventional myosin of the past decade. Considerable structural information is available for the motor domain, the IQ motifs with bound calmodulin or light chains, and the cargo-binding globular tail, all of which have been crystallized. The repertoire of adapter proteins that link myoV to a particular cargo is becoming better understood, enabling cellular transport processes to be dissected. MyoV is processive, meaning that it takes many steps on actin filaments without dissociating. Its extended lever arm results in long 36-nm steps, making it ideal for single molecule studies of processive movement. In addition, electron microscopy revealed the structure of the inactive, folded conformation of myoV when it is not transporting cargo. This review provides a background on myoV, and highlights recent discoveries that show why myoV will continue to be an active focus of investigation. Received 31 October 2007; received after revision 4 December 2007; accepted 2 January 2008  相似文献   
988.
Small HERC proteins are defined by the presence of one RCC1-like domain and a HECT domain. Having evolved out of one common ancestor, the four members of the family exhibit a high degree of homology in genomic organization and amino acid sequence, thus it seems possible that they might accomplish similar functions. Here we show that small HERC proteins interact with each other and localize to the same cellular structures, which we identify as late endosomes and lysosomes. We demonstrate interaction of HERC3 with the ubiquitin-like proteins hPLIC-1 and hPLIC-2 and we establish interaction of HERC5 with the metastasis suppressor Nm23B. While hPLIC proteins are not ubiquitinated by HERC3, HERC5 plays an important role in ubiquitination of Nm23B. In summary, although small HERC proteins are highly homologous showing the same subcellular distribution, they undergo different molecular interactions.  相似文献   
989.
Bile acids and bile alcohols in the form of their conjugates are amphipathic end products of cholesterol metabolism with multiple physiological functions. The great variety of bile acids and bile alcohols that are present in vertebrates are tabulated. Bile salts have an enterohepatic circulation resulting from efficient vectorial transport of bile salts through the hepatocyte and the ileal enterocyte; such transport leads to the accumulation of a pool of bile salts that cycles between the liver and intestine. Bile salt anions promote lipid absorption, enhance tryptic cleavage of dietary proteins, and have antimicrobial effects. Bile salts are signaling molecules, activating nuclear receptors in the hepatocyte and ileal enterocyte, as well as an increasing number of G-protein coupled receptors. Bile acids are used therapeutically to correct deficiency states, to decrease the cholesterol saturation of bile, or to decrease the cytotoxicity of retained bile acids in cholestatic liver disease.  相似文献   
990.
Molecular and Cellular Basis of Regeneration and Tissue Repair   总被引:2,自引:0,他引:2  
The Xenopus tadpole is a favourable organism for regeneration research because it is suitable for a wide range of micromanipulative procedures and for a wide range of transgenic methods. Combination of these techniques enables genes to be activated or inhibited at specific times and in specific tissue types to a much higher degree than in any other organism capable of regeneration. Regenerating systems include the tail, the limb buds and the lens. The study of tail regeneration has shown that each tissue type supplies the cells for its own replacement: there is no detectable de-differentiation or metaplasia. Signalling systems needed for regeneration include the BMP and Notch signalling pathways, and perhaps also the Wnt and FGF pathways. The limb buds will regenerate completely at early stages, but not once they are fully differentiated. This provides a good opportunity to study the loss of regenerative ability using transgenic methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号