首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45606篇
  免费   168篇
  国内免费   210篇
系统科学   382篇
丛书文集   924篇
教育与普及   87篇
理论与方法论   154篇
现状及发展   20936篇
研究方法   1698篇
综合类   21090篇
自然研究   713篇
  2013年   390篇
  2012年   621篇
  2011年   1348篇
  2010年   295篇
  2008年   773篇
  2007年   856篇
  2006年   876篇
  2005年   849篇
  2004年   829篇
  2003年   795篇
  2002年   728篇
  2001年   1325篇
  2000年   1274篇
  1999年   830篇
  1992年   811篇
  1991年   643篇
  1990年   722篇
  1989年   694篇
  1988年   683篇
  1987年   755篇
  1986年   697篇
  1985年   905篇
  1984年   709篇
  1983年   589篇
  1982年   510篇
  1981年   553篇
  1980年   703篇
  1979年   1394篇
  1978年   1184篇
  1977年   1182篇
  1976年   951篇
  1975年   1007篇
  1974年   1356篇
  1973年   1193篇
  1972年   1246篇
  1971年   1409篇
  1970年   1802篇
  1969年   1369篇
  1968年   1350篇
  1967年   1319篇
  1966年   1155篇
  1965年   827篇
  1964年   267篇
  1959年   471篇
  1958年   770篇
  1957年   553篇
  1956年   496篇
  1955年   443篇
  1954年   474篇
  1948年   321篇
排序方式: 共有10000条查询结果,搜索用时 515 毫秒
951.
952.
The gene coding for the amyloid protein, a component of neuritic plaques found in brain tissue from patients with Alzheimer's disease, has been localized to chromosome 21, and neighbouring polymorphic DNA markers segregate with Alzheimer's disease in several large families. These data, and the association of Alzheimer's disease with Down's syndrome, suggest that overproduction of the amyloid protein, or production of an abnormal variant of the protein, may be the underlying pathological change causing Alzheimer's disease. We have identified a restriction fragment length polymorphism of the A4-amyloid gene, and find recombinants in two Alzheimer's disease families between Alzheimer's disease and the A4-amyloid locus. This demonstrates that the gene for plaque core A4-amyloid cannot be the locus of a defect causing Alzheimer's disease in these families. These data indicate that alterations in the plaque core amyloid gene cannot explain the molecular pathology for all cases of Alzheimer's disease.  相似文献   
953.
Synapsin I bundles F-actin in a phosphorylation-dependent manner   总被引:12,自引:0,他引:12  
M B?hler  P Greengard 《Nature》1987,326(6114):704-707
Synapsin I is a neuron-specific phosphoprotein localized to the cytoplasmic surface of synaptic vesicles. This phosphoprotein is a major substrate for cyclic AMP-dependent and calcium/calmodulin-dependent protein kinases. Its state of phosphorylation can be altered both in vivo and in vitro by a variety of physiological and pharmacological manipulations known to affect synaptic function. Recent direct evidence suggests that it may be involved in the regulation of neurotransmitter release from the nerve terminal. In the nerve terminal, synaptic vesicles are embedded in a cytoskeletal network, consisting in part of actin. We report here the ability of the dephospho-form of synapsin I to bundle F-actin. This bundling activity is reduced when synapsin I is phosphorylated by cAMP-dependent protein kinase and virtually abolished when it is phosphorylated by calcium/calmodulin-dependent protein kinase II or by both kinases. These results, demonstrating an interaction of synapsin I with actin in vitro, support the possibility that synapsin I is involved in clustering of synaptic vesicles at the presynaptic terminal and that the phosphorylation of synapsin I may be involved in regulating the translocation of synaptic vesicles to their sites of release.  相似文献   
954.
Demographic study of a wild house sparrow population by DNA fingerprinting   总被引:28,自引:0,他引:28  
J H Wetton  R E Carter  D T Parkin  D Walters 《Nature》1987,327(6118):147-149
Over the past twenty years, several techniques from biochemical and molecular genetics, such as enzyme electrophoresis and isoelectric focusing, have been widely and successfully applied to the study of population differentiation and evolution. However, they have been less applicable to demographic problems such as assigning parentage to individuals within a population. This stems from a general weakness of data derived from enzyme loci: allele frequencies at polymorphic loci are sufficiently skewed that the majority of individuals are of one or two genotypes. Many enzyme systems can only be examined post mortem, so that the loci are of little use if the animals are to be studied in the wild. The search for new and more sensitive techniques for detecting genetic variation has continued, and recently a major discovery has come from molecular biology. Jeffreys et al. have reported the detection of a type of hypervariable 'minisatellite' DNA that is extraordinarily polymorphic in human populations. We have applied their technique to several bird species and particularly to a population of house sparrows (Passer domesticus) near Nottingham. We report here that one of the human minisatellite clones is a suitable probe for sparrow DNA and that it reveals variation as extensive as that found in man. These results suggest that analysis of minisatellite DNA will be a powerful tool in the study of demographic population genetics.  相似文献   
955.
W Reik  A Collick  M L Norris  S C Barton  M A Surani 《Nature》1987,328(6127):248-251
Mouse embryogenesis relies on the presence of both the maternal and the paternal genome for development to term. It has been proposed that specific modifications are imprinted onto the chromosomes during gametogenesis; these modifications are stably propagated, and their expression results in distinct and complementary contributions of the two parental genomes to the development of the embryo and the extraembryonic membranes. Genetic data further suggest that a substantial proportion of the genome could be subject to chromosomal imprinting, the molecular nature of which is unknown. We used random DNA insertions in transgenic mice to probe the genome for modified regions. The DNA methylation patterns of transgenic alleles were compared after transmission from mother or father in seven mouse strains carrying autosomal insertions of the same transgenic marker. One of these loci showed a clear difference in DNA methylation specific for its parental origin, with the paternally inherited copy being relatively undermethylated. This difference was observed in embryos on day 10 of gestation, but not in their extraembryonic membranes. Moreover, the methylation pattern was faithfully reversed upon each germline transmission to the opposite sex. Our findings provide evidence for heritable molecular differences between maternally and paternally derived alleles on mouse chromosomes.  相似文献   
956.
957.
Inositol 1,4,5-trisphosphate (InsP3) can stimulate skinned smooth and skeletal muscle to contract by initiating Ca2+ release from the sarcoplasmic reticulum. Whether this process is an integral component of the in vivo muscle activation mechanism was tested by releasing InsP3 rapidly within skinned muscle fibers of rabbit main pulmonary artery and frog semitendinosus. InsP3 was liberated on laser pulse photolysis of a photolabile but biologically inactive precursor of InsP3 termed caged InsP3. Caged InsP3 is a mixture of compounds in which InsP3 is esterified with 1(2-nitrophenyl)diazoethane (probably at the P4- or P5-position). Photochemical release of InsP3 induced a full contraction in both muscles at physiological free Mg2+ concentrations, but only in the smooth muscle were the InsP3 concentration (0.5 microM) and the activation rate compatible with the in vivo physiological response. Endogenous InsP3-specific phosphatase activity was present in smooth muscle and had about 35-fold greater activity than that in the skeletal-muscle preparation. Caged InsP3 was not susceptible to phosphatases in either preparation.  相似文献   
958.
A Dobbins  S W Zucker  M S Cynader 《Nature》1987,329(6138):438-441
Neurons in the visual cortex typically respond selectively to the orientation, and velocity and direction of movement, of moving-bar stimuli. These responses are generally thought to provide information about the orientation and position of lines and edges in the visual field. Some cells are also endstopped, that is selective for bars of specific lengths. Hubel and Wiesel first observed that endstopped hypercomplex cells could respond to curved stimuli and suggested they might be involved in detection of curvature, but the exact relationship between endstopping and curvature has never been determined. We present here a mathematical model relating endstopping to curvature in which the difference in response of two simple cells gives rise to endstopping and varies in proportion to curvature. We also provide physiological evidence that endstopped cells in area 17 of the cat visual cortex are selective for curvature, whereas non-endstopped cells are not, and that some are selective for the sign of curvature. The prevailing view of edge and curve determination is that orientations are selected locally by the class of simple cortical cells and then integrated to form global curves. We have developed a computational theory of orientation selection which shows that measurements of orientation obtained by simple cells are not sufficient because there will be strong, incorrect responses from cells whose receptive fields (RFs) span distinct curves (Fig. 1). If estimates of curvature are available, however, these inappropriate responses can be eliminated. Curvature provides the key to structuring the network that underlies our theory and distinguishes it from previous lateral inhibition schemes.  相似文献   
959.
M Hafner  C Petzelt 《Nature》1987,330(6145):264-266
Calcium ions are important in the regulation of mitotic apparatus assembly and in the control of chromosome movement. Changes in intracellular free calcium concentration, [Ca2+]i are achieved by an intracellular calcium-transport system which is highly conserved in different cell types. A membrane-bound protein of relative molecular mass (Mr) 46,000 (46K) is part of this transport system and has been implicated in the regulation of the [Ca2+]i changes associated with the course of mitosis. A monoclonal antibody against this 46K protein inhibits Ca2+-uptake into isolated Ca2+-sequestering membranes and specifically labels membranes associated with the mitotic apparatus of sea urchin embryos. Here we investigate the relationship between the intracellular calcium transport system and mitosis by injection of this monoclonal antibody into living mitotic sea urchin embryos. We find that after injection the intracellular free calcium increases up to 10(-6) M, the mitotic apparatus is rapidly destroyed and the cell is irreversibly blocked in its development.  相似文献   
960.
Astrocytes induce blood-brain barrier properties in endothelial cells   总被引:53,自引:0,他引:53  
R C Janzer  M C Raff 《Nature》1987,325(6101):253-257
The highly impermeable tight junctions between endothelial cells forming the capillaries and venules in the central nervous system (CNS) of higher vertebrates are thought to be responsible for the blood-brain barrier that impedes the passive diffusion of solutes from the blood into the extracellular space of the CNS. The ability of CNS endothelial cells to form a blood-brain barrier is not intrinsic to these cells but instead is induced by the CNS environment: Stewart and Wiley demonstrated that when avascular tissue from 3-day-old quail brain is transplanted into the coelomic cavity of chick embryos, the chick endothelial cells that vascularize the quail brain grafts form a competent blood-brain barrier; on the other hand, when avascular embryonic quail coelomic grafts are transplanted into embryonic chick brain, the chick endothelial cells that invade the mesenchymal tissue grafts form leaky capillaries and venules. It is, however, not known which cells in the CNS are responsible for inducing endothelial cells to form the tight junctions characteristic of the blood-brain barrier. Astrocytes are the most likely candidates since their processes form endfeet that collectively surround CNS microvessels. In this report we provide direct evidence that astrocytes are capable of inducing blood-brain barrier properties in non-neural endothelial cells in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号