首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
现状及发展   36篇
研究方法   5篇
综合类   17篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1991年   1篇
  1987年   2篇
  1981年   1篇
  1979年   2篇
  1977年   2篇
  1972年   1篇
  1971年   2篇
  1970年   2篇
  1968年   4篇
  1965年   9篇
  1964年   2篇
  1962年   1篇
  1956年   1篇
  1954年   1篇
  1948年   1篇
排序方式: 共有58条查询结果,搜索用时 250 毫秒
51.
Ludwig M  Sabatier N  Bull PM  Landgraf R  Dayanithi G  Leng G 《Nature》2002,418(6893):85-89
Information in neurons flows from synapses, through the dendrites and cell body (soma), and, finally, along the axon as spikes of electrical activity that will ultimately release neurotransmitters from the nerve terminals. However, the dendrites of many neurons also have a secretory role, transmitting information back to afferent nerve terminals. In some central nervous system neurons, spikes that originate at the soma can travel along dendrites as well as axons, and may thus elicit secretion from both compartments. Here, we show that in hypothalamic oxytocin neurons, agents that mobilize intracellular Ca(2+) induce oxytocin release from dendrites without increasing the electrical activity of the cell body, and without inducing secretion from the nerve terminals. Conversely, electrical activity in the cell bodies can cause the secretion of oxytocin from nerve terminals with little or no release from the dendrites. Finally, mobilization of intracellular Ca(2+) can also prime the releasable pool of oxytocin in the dendrites. This priming action makes dendritic oxytocin available for release in response to subsequent spike activity. Priming persists for a prolonged period, changing the nature of interactions between oxytocin neurons and their neighbours.  相似文献   
52.
53.
Current controversies about knowledge integration reflect conflicting ideas of what it means to “take Indigenous knowledge seriously”. While there is increased interest in integrating Indigenous and Western scientific knowledge in various disciplines such as anthropology and ethnobiology, integration projects are often accused of recognizing Indigenous knowledge only insofar as it is useful for Western scientists. The aim of this article is to use tools from philosophy of science to develop a model of both successful integration and integration failures. On the one hand, I argue that cross-cultural recognition of property clusters leads to an ontological overlap that makes knowledge integration often epistemically productive and socially useful. On the other hand, I argue that knowledge integration is limited by ontological divergence. Adequate models of Indigenous knowledge will therefore have to take integration failures seriously and I argue that integration efforts need to be complemented by a political notion of ontological self-determination.  相似文献   
54.
55.
56.
Clarifying the geographic, environmental and behavioural contexts in which the emergence of anatomically modern Homo sapiens occurred has proved difficult, particularly because Africa lacked adequate geochronological, palaeontological and archaeological evidence. The discovery of anatomically modern Homo sapiens fossils at Herto, Ethiopia, changes this. Here we report on stratigraphically associated Late Middle Pleistocene artefacts and fossils from fluvial and lake margin sandstones of the Upper Herto Member of the Bouri Formation, Middle Awash, Afar Rift, Ethiopia. The fossils and artefacts are dated between 160,000 and 154,000 years ago by precise age determinations using the 40Ar/39Ar method. The archaeological assemblages contain elements of both Acheulean and Middle Stone Age technocomplexes. Associated faunal remains indicate repeated, systematic butchery of hippopotamus carcasses. Contemporary adult and juvenile Homo sapiens fossil crania manifest bone modifications indicative of deliberate mortuary practices.  相似文献   
57.
Blood pH is maintained in a narrow range around pH 7.4 mainly through regulation of respiration and renal acid extrusion. The molecular mechanisms involved in pH homeostasis are not completely understood. Here we show that ovarian cancer G-protein-coupled receptor 1 (OGR1), previously described as a receptor for sphingosylphosphorylcholine, acts as a proton-sensing receptor stimulating inositol phosphate formation. The receptor is inactive at pH 7.8, and fully activated at pH 6.8-site-directed mutagenesis shows that histidines at the extracellular surface are involved in pH sensing. We find that GPR4, a close relative of OGR1, also responds to pH changes, but elicits cyclic AMP formation. It is known that the skeleton participates in pH homeostasis as a buffering organ, and that osteoblasts respond to pH changes in the physiological range, but the pH-sensing mechanism operating in these cells was hitherto not known. We detect expression of OGR1 in osteosarcoma cells and primary human osteoblast precursors, and show that these cells exhibit strong pH-dependent inositol phosphate formation. Immunohistochemistry on rat tissue sections confirms the presence of OGR1 in osteoblasts and osteocytes. We propose that OGR1 and GPR4 are proton-sensing receptors involved in pH homeostasis.  相似文献   
58.
Clathrin seems to be dispensable for some endocytic processes and, in several instances, no cytosolic coat protein complexes could be detected at sites of membrane invagination. Hence, new principles must in these cases be invoked to account for the mechanical force driving membrane shape changes. Here we show that the Gb3 (glycolipid)-binding B-subunit of bacterial Shiga toxin induces narrow tubular membrane invaginations in human and mouse cells and model membranes. In cells, tubule occurrence increases on energy depletion and inhibition of dynamin or actin functions. Our data thus demonstrate that active cellular processes are needed for tubule scission rather than tubule formation. We conclude that the B-subunit induces lipid reorganization that favours negative membrane curvature, which drives the formation of inward membrane tubules. Our findings support a model in which the lateral growth of B-subunit-Gb3 microdomains is limited by the invagination process, which itself is regulated by membrane tension. The physical principles underlying this basic cargo-induced membrane uptake may also be relevant to other internalization processes, creating a rationale for conceptualizing the perplexing diversity of endocytic routes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号