首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
  国内免费   1篇
理论与方法论   1篇
现状及发展   11篇
研究方法   11篇
综合类   29篇
  2022年   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2012年   5篇
  2011年   4篇
  2008年   3篇
  2007年   7篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   6篇
  2000年   1篇
  1994年   1篇
  1992年   2篇
  1979年   1篇
  1977年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有52条查询结果,搜索用时 31 毫秒
21.
Leptospirosis is a widely spread disease of global concern. Infection causes flu-like episodes with frequent severe renal and hepatic damage, such as haemorrhage and jaundice. In more severe cases, massive pulmonary haemorrhages, including fatal sudden haemoptysis, can occur. Here we report the complete genomic sequence of a representative virulent serovar type strain (Lai) of Leptospira interrogans serogroup Icterohaemorrhagiae consisting of a 4.33-megabase large chromosome and a 359-kilobase small chromosome, with a total of 4,768 predicted genes. In terms of the genetic determinants of physiological characteristics, the facultatively parasitic L. interrogans differs extensively from two other strictly parasitic pathogenic spirochaetes, Treponema pallidum and Borrelia burgdorferi, although similarities exist in the genes that govern their unique morphological features. A comprehensive analysis of the L. interrogans genes for chemotaxis/motility and lipopolysaccharide synthesis provides a basis for in-depth studies of virulence and pathogenesis. The discovery of a series of genes possibly related to adhesion, invasion and the haematological changes that characterize leptospirosis has provided clues about how an environmental organism might evolve into an important human pathogen.  相似文献   
22.
In a previous study, we identified and purified a 99-amino-acid rat liver-kidney perchloric-acid-soluble 23-kDa protein (P23) which displays 30% identity with a highly conserved domain of heat shock proteins (HSPs), as well as an AT-rich 3 untranslated region, which has also been described to play a role in H70 mRNA life span and protein expression. An identical perchloric-acid-soluble protein inhibiting protein synthesis in a rabbit reticulocyte lysate system was also found 2 years later by another group. More recently, the novel, the YjgF, protein family has been described, comprising, 24 full-length homologues, including P23, highly conserved through evolution, and consisting of approximately 130 residues each and sharing a common ternary structure. Independent studies from different laboratories have provided various hypothetical functions for each of these proteins. The high degree of evolutionary conservation may suggest that these proteins play an important role in cellular regulation. Although the function of none of these proteins is known precisely, we present experimental evidence which, combined with the relationship to glucose-regulating protein revealed here, and the relationship to fatty-acid-binding protein revealed by others, allow us to propose a role for P23. In rat liver, P23 expression is developmentally regulated and modulated by dietary glucose, and its mRNA is induced by starvation, in the presence of fatty-acids and in 3-MeDAB-induced hepatomas. The mRNA encoding mouse liver P23 is also hormonally modulated in a mouse line AT1F8. These data indicate that P23 protein might be a key controller of intermediary metabolism during fasting.Received 7 June 2003; received after revision 8 September 2004; accepted 10 October 2004  相似文献   
23.
Ligand-gated ion channels (LGICs) mediate excitatory and inhibitory transmission in the nervous system. Among them, the pentameric or 'Cys-loop' receptors (pLGICs) compose a family that until recently was found in only eukaryotes. Yet a recent genome search identified putative homologues of these proteins in several bacterial species. Here we report the cloning, expression and functional identification of one of these putative homologues from the cyanobacterium Gloeobacter violaceus. It was expressed as a homo-oligomer in HEK 293 cells and Xenopus oocytes, generating a transmembrane cationic channel that is opened by extracellular protons and shows slow kinetics of activation, no desensitization and a single channel conductance of 8 pS. Electron microscopy and cross-linking experiments of the protein fused to the maltose-binding protein and expressed in Escherichia coli are consistent with a homo-pentameric organization. Sequence comparison shows that it possesses a compact structure, with the absence of the amino-terminal helix, the canonical disulphide bridge and the large cytoplasmic domain found in eukaryotic pLGICs. Therefore it embodies a minimal structure required for signal transduction. These data establish the prokaryotic origin of the family. Because Gloeobacter violaceus carries out photosynthesis and proton transport at the cytoplasmic membrane, this new proton-gated ion channel might contribute to adaptation to pH change.  相似文献   
24.
Recently,research on two-dimensional (2D) semiconductors has begun to translate from the fundamen-tal investigation into rudimentary functional circuits.In this...  相似文献   
25.
Schimke immuno-osseous dysplasia (SIOD, MIM 242900) is an autosomal-recessive pleiotropic disorder with the diagnostic features of spondyloepiphyseal dysplasia, renal dysfunction and T-cell immunodeficiency. Using genome-wide linkage mapping and a positional candidate approach, we determined that mutations in SMARCAL1 (SWI/SNF2-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), are responsible for SIOD. Through analysis of data from persons with SIOD in 26 unrelated families, we observed that affected individuals from 13 of 23 families with severe disease had two alleles with nonsense, frameshift or splicing mutations, whereas affected individuals from 3 of 3 families with milder disease had a missense mutation on each allele. These observations indicate that some missense mutations allow retention of partial SMARCAL1 function and thus cause milder disease.  相似文献   
26.
Cells secreting immunoglobulins without detectable antibody function arising after an injection of horseradish peroxidase were micromanipulated from the center of haemolytic plaques of Sheep red blood cells coated with anti-Ig antibodies. These cells were cultured individually for 48 hrs, with irradiated cells as feeder layer and in the presence of the immunogen and of LPS. It was shown that after this time 22% of the immunoglobulin-secreting cells had generated antiperoxidase antibody-secreting cells or were transformed into antibody-secreting cells.  相似文献   
27.
28.
29.
Lee JB  Hite RK  Hamdan SM  Xie XS  Richardson CC  van Oijen AM 《Nature》2006,439(7076):621-624
A hallmark feature of DNA replication is the coordination between the continuous polymerization of nucleotides on the leading strand and the discontinuous synthesis of DNA on the lagging strand. This synchronization requires a precisely timed series of enzymatic steps that control the synthesis of an RNA primer, the recycling of the lagging-strand DNA polymerase, and the production of an Okazaki fragment. Primases synthesize RNA primers at a rate that is orders of magnitude lower than the rate of DNA synthesis by the DNA polymerases at the fork. Furthermore, the recycling of the lagging-strand DNA polymerase from a finished Okazaki fragment to a new primer is inherently slower than the rate of nucleotide polymerization. Different models have been put forward to explain how these slow enzymatic steps can take place at the lagging strand without losing coordination with the continuous and fast leading-strand synthesis. Nonetheless, a clear picture remains elusive. Here we use single-molecule techniques to study the kinetics of a multiprotein replication complex from bacteriophage T7 and to characterize the effect of primase activity on fork progression. We observe the synthesis of primers on the lagging strand to cause transient pausing of the highly processive leading-strand synthesis. In the presence of both leading- and lagging-strand synthesis, we observe the formation and release of a replication loop on the lagging strand. Before loop formation, the primase acts as a molecular brake and transiently halts progression of the replication fork. This observation suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during the slow enzymatic steps on the lagging strand.  相似文献   
30.
In 1961, Rolf Landauer argued that the erasure of information is a dissipative process. A minimal quantity of heat, proportional to the thermal energy and called the Landauer bound, is necessarily produced when a classical bit of information is deleted. A direct consequence of this logically irreversible transformation is that the entropy of the environment increases by a finite amount. Despite its fundamental importance for information theory and computer science, the erasure principle has not been verified experimentally so far, the main obstacle being the difficulty of doing single-particle experiments in the low-dissipation regime. Here we experimentally show the existence of the Landauer bound in a generic model of a one-bit memory. Using a system of a single colloidal particle trapped in a modulated double-well potential, we establish that the mean dissipated heat saturates at the Landauer bound in the limit of long erasure cycles. This result demonstrates the intimate link between information theory and thermodynamics. It further highlights the ultimate physical limit of irreversible computation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号