首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
综合类   28篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   7篇
  2011年   3篇
  2010年   5篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2002年   1篇
排序方式: 共有28条查询结果,搜索用时 156 毫秒
11.
采用旋转流变仪并结合Tanner黏弹性流体挤出胀大方程研究了剪切对聚丙烯腈/二甲基亚砜(PAN/DMSO)溶液挤出胀大的影响,用原子力显微镜(AFM)研究了挤出速度对PAN初生纤维表面粗糙度的影响规律。结果表明:随着挤出速度的增大,体系的挤出胀大比逐渐增大,当挤出速度大于90m/h时,挤出胀大比的变化出现拐点,增大的趋势变缓;聚合物大分子链的回复是初生纤维表面形貌形成的主要原因,湿法纺丝过程中,挤出速度低于90m/h时初生纤维表面粗糙度随着挤出速度增加而减少,在较高挤出速度时,随着挤出速度增加而增加;干湿法纺丝初生纤维的表面粗糙度明显低于湿法纺丝,并且随挤出速度的增加而增大。  相似文献   
12.
PAN纤维预处理条件对其后续反应热性能的影响   总被引:1,自引:1,他引:0  
将聚丙烯腈(PAN)纤维在空气气氛中于180~240℃范围内进行预处理,利用差示扫描量热仪(DSC)和傅立叶变换红外光谱(FT-IR)测试手段考察了预处理过程中形成的初期结构及其含量对纤维后续反应热性能的影响。结果表明:PAN纤维预处理过程中形成的含氧结构影响纤维的后续反应热性能;初期形成的含氧结构及其含量具有明显的时间效应和温度效应。  相似文献   
13.
通过X射线衍射、溶胀DSC测试研究了凝固浴中沉淀剂极性对PAN聚合物结晶度及晶粒尺寸分布的影响,并采用紫外光谱和流变测试分析了其影响机理。研究结果表明,沉淀剂极性对PAN聚合物晶粒尺寸分布有较大的影响,这种影响是通过沉淀剂分子与PAN分子氰基之间的络合作用实现的;沉淀剂极性越大,这种络合作用越强,对PAN大分子运动能力的束缚作用越明显,PAN聚合物中各晶粒之间的生长速度差异变小,使得PAN聚合物的晶粒尺寸分布变窄。  相似文献   
14.
运用EA、Raman和XRD等方法分别研究了PAN基碳纤维石墨化过程中非结构型成分铁对碳纤维中C、N、H等结构型成分、化学结构和聚集态结构的影响,探讨了碳纤维成分变化与结构演变的关联关系。研究表明,元素铁对碳纤维中N元素的逸出具有较强的催化作用,碳纤维中C元素含量由于N元素被催化脱除而提高的更快;元素铁催化脱氮减少了碳纤维结构重排中的能耗,从而有利于碳纤维中的乱层结构碳向石墨结构碳的转变;同时,元素铁促进石墨片层基面宽度(La)增长;由于N元素沿纤维径向地逸出,元素铁催化脱氮产生的气胀作用力阻碍石墨片层的堆叠,因此铁对石墨片层层间距(d002)几无影响,层间距的发展主要体现温度效应。  相似文献   
15.
将聚丙烯腈(PAN)纤维在空气气氛中于130~190 ℃范围内进行热处理,通过傅里叶红外光谱(FT-IR)、凝胶渗透色谱(GPC)和元素分析(EA)等方法研究了PAN纤维预氧化初期的结构演变。结果表明:PAN大分子链中的羧酸共聚组分在130 ℃左右时引发分子内环化和分子间交联反应,生成酯羰基结构;随着热处理温度升高,PAN大分子进一步发生环化和脱氢反应,生成—C=N—C=N—共轭结构和—C=C—C=C—共轭结构;当温度高于190 ℃时,PAN大分子开始发生剧烈的环化脱氢反应,生成不饱和芳环结构。  相似文献   
16.
采用X-射线衍射、声速仪和红外光谱研究了聚丙烯腈(PAN)纤维在分子热分解—环化演变初期张力的作用,结果表明:在PAN纤维氰基热分解环化初期,张力可以增加纤维中分子聚集态结构的有序化程度;有利于PAN纤维构型的转变和完善原丝原有结构,随张力的增大,PAN纤维的全取向度和结晶度也是增加的;另外,张力可以促进PAN纤维分子的热分解环化反应,尤其是分子内的环化反应,当牵伸达到4%以后可以使微晶尺寸变小,这对提高纤维强度是有利的。  相似文献   
17.
高升力多段机翼的转捩预测研究   总被引:2,自引:0,他引:2  
本文采用Menter等发展的基于局部变量的γ-Reθt湍流转捩模式对平板和NLR7301翼型开展了转捩模式验证工作,进而对带有前、后缘襟翼的多段机翼流动转捩进行了数值模拟.研究结果表明,转捩对于多段机翼的气动特性具有较大影响,数值模拟可为多段机翼中襟翼偏角、间距等设计提供有益指导.  相似文献   
18.
借助热机械分析仪(TMA)、X射线衍射仪(XRD)、声速仪等研究了聚集态结构对聚丙烯腈(PAN)纤维分子链物理收缩特性的影响。结果表明,由于聚集态结构影响分子链段运动性,PAN纤维分子链表现出分级收缩的特点:物理收缩首先开始于纤维非晶区,之后向晶区边界分子链扩展;非晶区分子链段收缩是物理收缩的主要部分,收缩率随非晶区取向度增加而增大;晶区边界分子链段运动受周围晶区限制,收缩较非晶区缓和,随晶区边界取向分子链增多,收缩率小幅增大;温度升高、时间延长,各段收缩率均不同程度增大。  相似文献   
19.
利用TG,Raman,EA,XRD,NMR等分析手段,研究了预氧纤维在碳化过程中的结构转变。研究结果表明:碳纤维体密度随预氧纤维体密度的升高呈下降趋势;预氧纤维中的含氧量会影响碳纤维的致密结构,氧元素的脱除影响碳纤维非晶区结构的交缠程度进而影响碳纤维体密度,碳纤维体密度随预氧纤维的含氧量增加而降低。通过碳纤维致密结构与预氧纤维结构的相关性分析,初步建立了两者之间的关联关系。  相似文献   
20.
光学显微镜研究PAN/DMSO溶液的相分离过程   总被引:1,自引:1,他引:0  
使用光学显微镜观察了聚丙烯腈(PAN)/二甲基亚砜(DMSO)溶液的相分离过程,测量了相分离后聚丙烯腈固相的凝固层厚度,并研究了时间、凝固液浓度和PAN/DMSO溶液固含量对相分离进程的影响。结果表明:凝固层厚度与凝固时间的平方根成正比;随着时间的增加,凝固层厚度增大,凝固速率保持不变;随着凝固液浓度和纺丝溶液固含量的增加,凝固层厚度和凝固速率均减小,且相分离后的聚丙烯腈固相孔隙越少,结构越致密均匀。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号