首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53960篇
  免费   2094篇
  国内免费   2036篇
系统科学   2866篇
丛书文集   1846篇
教育与普及   2047篇
理论与方法论   503篇
现状及发展   1073篇
研究方法   184篇
综合类   49561篇
自然研究   10篇
  2025年   5篇
  2024年   587篇
  2023年   665篇
  2022年   847篇
  2021年   1052篇
  2020年   630篇
  2019年   219篇
  2018年   997篇
  2017年   1181篇
  2016年   842篇
  2015年   1105篇
  2014年   1539篇
  2013年   1384篇
  2012年   1783篇
  2011年   2583篇
  2010年   2329篇
  2009年   2441篇
  2008年   2820篇
  2007年   2859篇
  2006年   1768篇
  2005年   1797篇
  2004年   1361篇
  2003年   1188篇
  2002年   1088篇
  2001年   1243篇
  2000年   1420篇
  1999年   2634篇
  1998年   2479篇
  1997年   2595篇
  1996年   2376篇
  1995年   2072篇
  1994年   1959篇
  1993年   1701篇
  1992年   1435篇
  1991年   1242篇
  1990年   1092篇
  1989年   977篇
  1988年   794篇
  1987年   513篇
  1986年   290篇
  1985年   106篇
  1984年   30篇
  1983年   8篇
  1982年   7篇
  1979年   5篇
  1974年   6篇
  1973年   4篇
  1970年   4篇
  1968年   3篇
  1966年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Effects of macromolecular crowding on structural and functional properties of ordered proteins, their folding, interactability, and aggregation are well documented. Much less is known about how macromolecular crowding might affect structural and functional behaviour of intrinsically disordered proteins (IDPs) or intrinsically disordered protein regions (IDPRs). To fill this gap, this review represents a systematic analysis of the available literature data on the behaviour of IDPs/IDPRs in crowded environment. Although it was hypothesized that, due to the excluded-volume effects present in crowded environments, IDPs/IDPRs would invariantly fold in the presence of high concentrations of crowding agents or in the crowded cellular environment, accumulated data indicate that, based on their response to the presence of crowders, IDPs/IDPRs can be grouped into three major categories, foldable, non-foldable, and unfoldable. This is because natural cellular environment is not simply characterized by the presence of high concentration of “inert” macromolecules, but represents an active milieu, components of which are engaged in direct physical interactions and soft interactions with target proteins. Some of these interactions with cellular components can cause (local) unfolding of query proteins. In other words, since crowding can cause both folding and unfolding of an IDP or its regions, the outputs of the placing of a query protein to the crowded environment would depend on the balance between these two processes. As a result, and because of the spatio-temporal heterogeneity in structural organization of IDPs, macromolecular crowding can differently affect structures of different IDPs. Recent studies indicate that some IDPs are able to undergo liquid–liquid-phase transitions leading to the formation of various proteinaceous membrane-less organelles (PMLOs). Although interiors of such PMLOs are self-crowded, being characterized by locally increased concentrations of phase-separating IDPs, these IDPs are minimally foldable or even non-foldable at all (at least within the physiologically safe time-frame of normal PMLO existence).  相似文献   
72.
Progress in research on endocannabinoid signaling has greatly advanced our understanding of how it controls neural circuit excitability in health and disease. In general, endocannabinoid signaling at excitatory synapses suppresses seizures by inhibiting glutamate release. In contrast, endocannabinoid signaling promotes seizures by inhibiting GABA release at inhibitory synapses. The physiological distribution of endocannabinoid signaling molecules becomes disrupted with the development of epileptic focus in patients with mesial temporal lobe epilepsy and in animal models of experimentally induced epilepsy. Augmentation of endocannabinoid signaling can promote the development of epileptic focus at initial stages. However, at later stages, increased endocannabinoid signaling delays it and suppresses spontaneous seizures. Thus, the regulation of endocannabinoid signaling at specific synapses that cause hyperexcitability during particular stages of disease development may be effective for treating epilepsy and epileptogenesis.  相似文献   
73.
74.
75.
Viruses are obligate intracellular pathogens that are dependent on cellular machineries for their replication. Recent technological breakthroughs have facilitated reliable identification of host factors required for viral infections and better characterization of the virus–host interplay. While these studies have revealed cellular machineries that are uniquely required by individual viruses, accumulating data also indicate the presence of broadly required mechanisms. Among these overlapping cellular functions are components of intracellular membrane trafficking pathways. Here, we review recent discoveries focused on how viruses exploit intracellular membrane trafficking pathways to promote various stages of their life cycle, with an emphasis on cellular factors that are usurped by a broad range of viruses. We describe broadly required components of the endocytic and secretory pathways, the Endosomal Sorting Complexes Required for Transport pathway, and the autophagy pathway. Identification of such overlapping host functions offers new opportunities to develop broad-spectrum host-targeted antiviral strategies.  相似文献   
76.
Protein misfolding and aggregation into fibrillar deposits is a common feature of a large group of degenerative diseases affecting the central nervous system or peripheral organs, termed protein misfolding disorders (PMDs). Despite their established toxic nature, clinical trials aiming to reduce misfolded aggregates have been unsuccessful in treating or curing PMDs. An interesting possibility for disease intervention is the regular intake of natural food or herbal extracts, which contain active molecules that inhibit aggregation or induce the disassembly of misfolded aggregates. Among natural compounds, phenolic molecules are of particular interest, since most have dual activity as amyloid aggregation inhibitors and antioxidants. In this article, we review many phenolic natural compounds which have been reported in diverse model systems to have the potential to delay or prevent the development of various PMDs, including Alzheimer’s and Parkinson’s diseases, prion diseases, amyotrophic lateral sclerosis, systemic amyloidosis, and type 2 diabetes. The lower toxicity of natural compounds compared to synthetic chemical molecules suggest that they could serve as a good starting point to discover protein misfolding inhibitors that might be useful for the treatment of various incurable diseases.  相似文献   
77.
Classical dendritic cells (cDCs) play a pivotal role in the early events that tip the immune response toward persistence or viral control. In vitro studies indicate that HIV infection induces the dysregulation of cDCs through binding of the LILRB2 inhibitory receptor to its MHC-I ligands and the strength of this interaction was proposed to drive disease progression. However, the dynamics of the LILRB2/MHC-I inhibitory axis in cDCs during early immune responses against HIV are yet unknown. Here, we show that early HIV-1 infection induces a strong and simultaneous increase of LILRB2 and MHC-I expression on the surface of blood cDCs. We further characterized the early dynamics of LILRB2 and MHC-I expression by showing that SIVmac251 infection of macaques promotes coordinated up-regulation of LILRB2 and MHC-I on cDCs and monocytes/macrophages, from blood and lymph nodes. Orientation towards the LILRB2/MHC-I inhibitory axis starts from the first days of infection and is transiently induced in the entire cDC population in acute phase. Analysis of the factors involved indicates that HIV-1 replication, TLR7/8 triggering, and treatment by IL-10 or type I IFNs increase LILRB2 expression. Finally, enhancement of the LILRB2/MHC-I inhibitory axis is specific to HIV-1 and SIVmac251 infections, as expression of LILRB2 on cDCs decreased in naturally controlled chikungunya virus infection of macaques. Altogether, our data reveal a unique up-regulation of LILRB2 and its MHC-I ligands on cDCs in the early phase of SIV/HIV infection, which may account for immune dysregulation at a critical stage of the anti-viral response.  相似文献   
78.
79.
Nested clusters arise independently in graph partitioning and in the study of contours. We take a step toward unifying these two instances of nested clusters. We show that the graph theoretical tight clusters introduced by Dress, Steel, Moulton and Wu in 2010 are a special case of nested clusters associated to contours.  相似文献   
80.
The Deterministic Input Noisy Output “AND” gate (DINA) model and the Deterministic Input Noisy Output “OR” gate (DINO) model are two popular cognitive diagnosis models (CDMs) for educational assessment. They represent different views on how the mastery of cognitive skills and the probability of a correct item response are related. Recently, however, Liu, Xu, and Ying demonstrated that the DINO model and the DINA model share a “dual” relation. This means that one model can be expressed in terms of the other, and which of the two models is fitted to a given data set is essentially irrelevant because the results are identical. In this article, a proof of the duality of the DINA model and the DINO model is presented that is tailored to the form and parameterization of general CDMs that have become the new theoretical standard in cognitively diagnostic modeling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号