首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22839篇
  免费   58篇
  国内免费   61篇
系统科学   235篇
丛书文集   493篇
教育与普及   46篇
理论与方法论   64篇
现状及发展   9526篇
研究方法   922篇
综合类   11284篇
自然研究   388篇
  2013年   135篇
  2012年   308篇
  2011年   720篇
  2010年   109篇
  2008年   343篇
  2007年   404篇
  2006年   428篇
  2005年   425篇
  2004年   426篇
  2003年   447篇
  2002年   354篇
  2001年   708篇
  2000年   706篇
  1999年   414篇
  1992年   410篇
  1991年   364篇
  1990年   388篇
  1989年   326篇
  1988年   368篇
  1987年   367篇
  1986年   342篇
  1985年   484篇
  1984年   363篇
  1983年   303篇
  1982年   238篇
  1981年   256篇
  1980年   343篇
  1979年   687篇
  1978年   580篇
  1977年   551篇
  1976年   472篇
  1975年   531篇
  1974年   663篇
  1973年   580篇
  1972年   588篇
  1971年   701篇
  1970年   925篇
  1969年   726篇
  1968年   624篇
  1967年   653篇
  1966年   596篇
  1965年   433篇
  1964年   113篇
  1959年   264篇
  1958年   400篇
  1957年   303篇
  1956年   269篇
  1955年   238篇
  1954年   263篇
  1948年   176篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
251.
Müller RD 《Nature》2007,449(7164):795-796
  相似文献   
252.
The ability to maintain adequate nutrient intake is critical for survival. Complex interrelated neuronal circuits have developed in the mammalian brain to regulate many aspects of feeding behaviour, from food-seeking to meal termination. The hypothalamus and brainstem are thought to be the principal homeostatic brain areas responsible for regulating body weight. However, in the current 'obesogenic' human environment food intake is largely determined by non-homeostatic factors including cognition, emotion and reward, which are primarily processed in corticolimbic and higher cortical brain regions. Although the pleasure of eating is modulated by satiety and food deprivation increases the reward value of food, there is currently no adequate neurobiological account of this interaction between homeostatic and higher centres in the regulation of food intake in humans. Here we show, using functional magnetic resonance imaging, that peptide YY3-36 (PYY), a physiological gut-derived satiety signal, modulates neural activity within both corticolimbic and higher-cortical areas as well as homeostatic brain regions. Under conditions of high plasma PYY concentrations, mimicking the fed state, changes in neural activity within the caudolateral orbital frontal cortex predict feeding behaviour independently of meal-related sensory experiences. In contrast, in conditions of low levels of PYY, hypothalamic activation predicts food intake. Thus, the presence of a postprandial satiety factor switches food intake regulation from a homeostatic to a hedonic, corticolimbic area. Our studies give insights into the neural networks in humans that respond to a specific satiety signal to regulate food intake. An increased understanding of how such homeostatic and higher brain functions are integrated may pave the way for the development of new treatment strategies for obesity.  相似文献   
253.
Arrigo KR 《Nature》2007,450(7169):491-492
  相似文献   
254.
Photosynthetic complexes are exquisitely tuned to capture solar light efficiently, and then transmit the excitation energy to reaction centres, where long term energy storage is initiated. The energy transfer mechanism is often described by semiclassical models that invoke 'hopping' of excited-state populations along discrete energy levels. Two-dimensional Fourier transform electronic spectroscopy has mapped these energy levels and their coupling in the Fenna-Matthews-Olson (FMO) bacteriochlorophyll complex, which is found in green sulphur bacteria and acts as an energy 'wire' connecting a large peripheral light-harvesting antenna, the chlorosome, to the reaction centre. The spectroscopic data clearly document the dependence of the dominant energy transport pathways on the spatial properties of the excited-state wavefunctions of the whole bacteriochlorophyll complex. But the intricate dynamics of quantum coherence, which has no classical analogue, was largely neglected in the analyses-even though electronic energy transfer involving oscillatory populations of donors and acceptors was first discussed more than 70 years ago, and electronic quantum beats arising from quantum coherence in photosynthetic complexes have been predicted and indirectly observed. Here we extend previous two-dimensional electronic spectroscopy investigations of the FMO bacteriochlorophyll complex, and obtain direct evidence for remarkably long-lived electronic quantum coherence playing an important part in energy transfer processes within this system. The quantum coherence manifests itself in characteristic, directly observable quantum beating signals among the excitons within the Chlorobium tepidum FMO complex at 77 K. This wavelike characteristic of the energy transfer within the photosynthetic complex can explain its extreme efficiency, in that it allows the complexes to sample vast areas of phase space to find the most efficient path.  相似文献   
255.
How long does it take a random walker to reach a given target point? This quantity, known as a first-passage time (FPT), has led to a growing number of theoretical investigations over the past decade. The importance of FPTs originates from the crucial role played by first encounter properties in various real situations, including transport in disordered media, neuron firing dynamics, spreading of diseases or target search processes. Most methods of determining FPT properties in confining domains have been limited to effectively one-dimensional geometries, or to higher spatial dimensions only in homogeneous media. Here we develop a general theory that allows accurate evaluation of the mean FPT in complex media. Our analytical approach provides a universal scaling dependence of the mean FPT on both the volume of the confining domain and the source-target distance. The analysis is applicable to a broad range of stochastic processes characterized by length-scale-invariant properties. Our theoretical predictions are confirmed by numerical simulations for several representative models of disordered media, fractals, anomalous diffusion and scale-free networks.  相似文献   
256.
Tritsch NX  Yi E  Gale JE  Glowatzki E  Bergles DE 《Nature》2007,450(7166):50-55
Spontaneous activity in the developing auditory system is required for neuronal survival as well as the refinement and maintenance of tonotopic maps in the brain. However, the mechanisms responsible for initiating auditory nerve firing in the absence of sound have not been determined. Here we show that supporting cells in the developing rat cochlea spontaneously release ATP, which causes nearby inner hair cells to depolarize and release glutamate, triggering discrete bursts of action potentials in primary auditory neurons. This endogenous, ATP-mediated signalling synchronizes the output of neighbouring inner hair cells, which may help refine tonotopic maps in the brain. Spontaneous ATP-dependent signalling rapidly subsides after the onset of hearing, thereby preventing this experience-independent activity from interfering with accurate encoding of sound. These data indicate that supporting cells in the organ of Corti initiate electrical activity in auditory nerves before hearing, pointing to an essential role for peripheral, non-sensory cells in the development of central auditory pathways.  相似文献   
257.
The significance of nitrification for oceanic new production   总被引:1,自引:0,他引:1  
Yool A  Martin AP  Fernández C  Clark DR 《Nature》2007,447(7147):999-1002
The flux of organic material sinking to depth is a major control on the inventory of carbon in the ocean. To first order, the oceanic system is at equilibrium such that what goes down must come up. Because the export flux is difficult to measure directly, it is routinely estimated indirectly by quantifying the amount of phytoplankton growth, or primary production, fuelled by the upward flux of nitrate. To do so it is necessary to take into account other sources of biologically available nitrogen. However, the generation of nitrate by nitrification in surface waters has only recently received attention. Here we perform the first synthesis of open-ocean measurements of the specific rate of surface nitrification and use these to configure a global biogeochemical model to quantify the global role of nitrification. We show that for much of the world ocean a substantial fraction of the nitrate taken up is generated through recent nitrification near the surface. At the global scale, nitrification accounts for about half of the nitrate consumed by growing phytoplankton. A consequence is that many previous attempts to quantify marine carbon export, particularly those based on inappropriate use of the f-ratio (a measure of the efficiency of the 'biological pump'), are significant overestimates.  相似文献   
258.
Coupling superconducting qubits via a cavity bus   总被引:2,自引:0,他引:2  
Superconducting circuits are promising candidates for constructing quantum bits (qubits) in a quantum computer; single-qubit operations are now routine, and several examples of two-qubit interactions and gates have been demonstrated. These experiments show that two nearby qubits can be readily coupled with local interactions. Performing gate operations between an arbitrary pair of distant qubits is highly desirable for any quantum computer architecture, but has not yet been demonstrated. An efficient way to achieve this goal is to couple the qubits to a 'quantum bus', which distributes quantum information among the qubits. Here we show the implementation of such a quantum bus, using microwave photons confined in a transmission line cavity, to couple two superconducting qubits on opposite sides of a chip. The interaction is mediated by the exchange of virtual rather than real photons, avoiding cavity-induced loss. Using fast control of the qubits to switch the coupling effectively on and off, we demonstrate coherent transfer of quantum states between the qubits. The cavity is also used to perform multiplexed control and measurement of the qubit states. This approach can be expanded to more than two qubits, and is an attractive architecture for quantum information processing on a chip.  相似文献   
259.
Striemer CC  Gaborski TR  McGrath JL  Fauchet PM 《Nature》2007,445(7129):749-753
Commercial ultrafiltration and dialysis membranes have broad pore size distributions and are over 1,000 times thicker than the molecules they are designed to separate, leading to poor size cut-off properties, filtrate loss within the membranes, and low transport rates. Nanofabricated membranes have great potential in molecular separation applications by offering more precise structural control, yet transport is also limited by micrometre-scale thicknesses. This limitation can be addressed by a new class of ultrathin nanostructured membranes where the membrane is roughly as thick (approximately 10 nm) as the molecules being separated, but membrane fragility and complex fabrication have prevented the use of ultrathin membranes for molecular separations. Here we report the development of an ultrathin porous nanocrystalline silicon (pnc-Si) membrane using straightforward silicon fabrication techniques that provide control over average pore sizes from approximately 5 nm to 25 nm. Our pnc-Si membranes can retain proteins while permitting the transport of small molecules at rates an order of magnitude faster than existing materials, separate differently sized proteins under physiological conditions, and separate similarly sized molecules carrying different charges. Despite being only 15 nm thick, pnc-Si membranes that are free-standing over 40,000 microm2 can support a full atmosphere of differential pressure without plastic deformation or fracture. By providing efficient, low-loss macromolecule separations, pnc-Si membranes are expected to enable a variety of new devices, including membrane-based chromatography systems and both analytical and preparative microfluidic systems that require highly efficient separations.  相似文献   
260.
The remarkable diversity, glycosylation and conformational flexibility of the human immunodeficiency virus type 1 (HIV-1) envelope (Env), including substantial rearrangement of the gp120 glycoprotein upon binding the CD4 receptor, allow it to evade antibody-mediated neutralization. Despite this complexity, the HIV-1 Env must retain conserved determinants that mediate CD4 binding. To evaluate how these determinants might provide opportunities for antibody recognition, we created variants of gp120 stabilized in the CD4-bound state, assessed binding of CD4 and of receptor-binding-site antibodies, and determined the structure at 2.3 A resolution of the broadly neutralizing antibody b12 in complex with gp120. b12 binds to a conformationally invariant surface that overlaps a distinct subset of the CD4-binding site. This surface is involved in the metastable attachment of CD4, before the gp120 rearrangement required for stable engagement. A site of vulnerability, related to a functional requirement for efficient association with CD4, can therefore be targeted by antibody to neutralize HIV-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号