首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   0篇
  国内免费   3篇
系统科学   4篇
教育与普及   2篇
理论与方法论   6篇
现状及发展   23篇
研究方法   30篇
综合类   133篇
自然研究   18篇
  2021年   3篇
  2018年   2篇
  2016年   2篇
  2014年   1篇
  2013年   6篇
  2012年   17篇
  2011年   31篇
  2010年   3篇
  2009年   6篇
  2008年   17篇
  2007年   9篇
  2006年   12篇
  2005年   11篇
  2004年   13篇
  2003年   9篇
  2002年   15篇
  2001年   6篇
  2000年   7篇
  1999年   3篇
  1998年   1篇
  1995年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   3篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   2篇
  1968年   2篇
  1965年   2篇
排序方式: 共有216条查询结果,搜索用时 15 毫秒
91.
92.
How adult tissue stem and niche cells respond to the nutritional state of an organism is not well understood. Here we find that Paneth cells, a key constituent of the mammalian intestinal stem-cell (ISC) niche, augment stem-cell function in response to calorie restriction. Calorie restriction acts by reducing mechanistic target of rapamycin complex 1 (mTORC1) signalling in Paneth cells, and the ISC-enhancing effects of calorie restriction can be mimicked by rapamycin. Calorie intake regulates mTORC1 in Paneth cells, but not ISCs, and forced activation of mTORC1 in Paneth cells during calorie restriction abolishes the ISC-augmenting effects of the niche. Finally, increased expression of bone stromal antigen 1 (Bst1) in Paneth cells—an ectoenzyme that produces the paracrine factor cyclic ADP ribose—mediates the effects of calorie restriction and rapamycin on ISC function. Our findings establish that mTORC1 non-cell-autonomously regulates stem-cell self-renewal, and highlight a significant role of the mammalian intestinal niche in coupling stem-cell function to organismal physiology.  相似文献   
93.
Accessibility of information on the web.   总被引:80,自引:0,他引:80  
S Lawrence  C L Giles 《Nature》1999,400(6740):107-109
  相似文献   
94.
Witmer LM  Chatterjee S  Franzosa J  Rowe T 《Nature》2003,425(6961):950-953
Comparison of birds and pterosaurs, the two archosaurian flyers, sheds light on adaptation to an aerial lifestyle. The neurological basis of control holds particular interest in that flight demands on sensory integration, equilibrium, and muscular coordination are acute. Here we compare the brain and vestibular apparatus in two pterosaurs based on high-resolution computed tomographic (CT) scans from which we constructed digital endocasts. Although general neural organization resembles birds, pterosaurs had smaller brains relative to body mass than do birds. This difference probably has more to do with phylogeny than flight, in that birds evolved from nonavian theropods that had already established trends for greater encephalization. Orientation of the osseous labyrinth relative to the long axis of the skull was different in these two pterosaur species, suggesting very different head postures and reflecting differing behaviours. Their enlarged semicircular canals reflect a highly refined organ of equilibrium, which is concordant with pterosaurs being visually based, aerial predators. Their enormous cerebellar floccular lobes may suggest neural integration of extensive sensory information from the wing, further enhancing eye- and neck-based reflex mechanisms for stabilizing gaze.  相似文献   
95.
The insulin receptor is a phylogenetically ancient tyrosine kinase receptor found in organisms as primitive as cnidarians and insects. In higher organisms it is essential for glucose homeostasis, whereas the closely related insulin-like growth factor receptor (IGF-1R) is involved in normal growth and development. The insulin receptor is expressed in two isoforms, IR-A and IR-B; the former also functions as a high-affinity receptor for IGF-II and is implicated, along with IGF-1R, in malignant transformation. Here we present the crystal structure at 3.8 A resolution of the IR-A ectodomain dimer, complexed with four Fabs from the monoclonal antibodies 83-7 and 83-14 (ref. 4), grown in the presence of a fragment of an insulin mimetic peptide. The structure reveals the domain arrangement in the disulphide-linked ectodomain dimer, showing that the insulin receptor adopts a folded-over conformation that places the ligand-binding regions in juxtaposition. This arrangement is very different from previous models. It shows that the two L1 domains are on opposite sides of the dimer, too far apart to allow insulin to bind both L1 domains simultaneously as previously proposed. Instead, the structure implicates the carboxy-terminal surface of the first fibronectin type III domain as the second binding site involved in high-affinity binding.  相似文献   
96.
Hattori D  Demir E  Kim HW  Viragh E  Zipursky SL  Dickson BJ 《Nature》2007,449(7159):223-227
Neurons are thought to use diverse families of cell-surface molecules for cell recognition during circuit assembly. In Drosophila, alternative splicing of the Down syndrome cell adhesion molecule (Dscam) gene potentially generates 38,016 closely related transmembrane proteins of the immunoglobulin superfamily, each comprising one of 19,008 alternative ectodomains linked to one of two alternative transmembrane segments. These ectodomains show isoform-specific homophilic binding, leading to speculation that Dscam proteins mediate cell recognition. Genetic studies have established that Dscam is required for neural circuit assembly, but the extent to which isoform diversity contributes to this process is not known. Here we provide conclusive evidence that Dscam diversity is essential for circuit assembly. Using homologous recombination, we reduced the entire repertoire of Dscam ectodomains to just a single isoform. Neural circuits in these mutants are severely disorganized. Furthermore, we show that it is crucial for neighbouring neurons to express distinct isoforms, but that the specific identity of the isoforms expressed in an individual neuron is unimportant. We conclude that Dscam diversity provides each neuron with a unique identity by which it can distinguish its own processes from those of other neurons, and that this self-recognition is essential for wiring the Drosophila brain.  相似文献   
97.
98.
99.
Bertet C  Sulak L  Lecuit T 《Nature》2004,429(6992):667-671
Shaping a developing organ or embryo relies on the spatial regulation of cell division and shape. However, morphogenesis also occurs through changes in cell-neighbourhood relationships produced by intercalation. Intercalation poses a special problem in epithelia because of the adherens junctions, which maintain the integrity of the tissue. Here we address the mechanism by which an ordered process of cell intercalation directs polarized epithelial morphogenesis during germ-band elongation, the developmental elongation of the Drosophila embryo. Intercalation progresses because junctions are spatially reorganized in the plane of the epithelium following an ordered pattern of disassembly and reassembly. The planar remodelling of junctions is not driven by external forces at the tissue boundaries but depends on local forces at cell boundaries. Myosin II is specifically enriched in disassembling junctions, and its planar polarized localization and activity are required for planar junction remodelling and cell intercalation. This simple cellular mechanism provides a general model for polarized morphogenesis in epithelial organs.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号