首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   716篇
  免费   4篇
系统科学   3篇
理论与方法论   4篇
现状及发展   424篇
研究方法   65篇
综合类   223篇
自然研究   1篇
  2018年   9篇
  2017年   9篇
  2016年   8篇
  2014年   9篇
  2013年   10篇
  2012年   33篇
  2011年   32篇
  2010年   17篇
  2009年   12篇
  2008年   41篇
  2007年   37篇
  2006年   32篇
  2005年   26篇
  2004年   16篇
  2003年   17篇
  2002年   30篇
  2001年   16篇
  2000年   19篇
  1999年   7篇
  1988年   5篇
  1986年   6篇
  1985年   7篇
  1984年   8篇
  1980年   10篇
  1979年   15篇
  1978年   11篇
  1977年   9篇
  1976年   12篇
  1975年   11篇
  1974年   8篇
  1973年   18篇
  1972年   9篇
  1971年   17篇
  1970年   10篇
  1969年   12篇
  1968年   8篇
  1967年   13篇
  1966年   15篇
  1965年   8篇
  1962年   6篇
  1961年   5篇
  1960年   8篇
  1959年   5篇
  1958年   6篇
  1957年   6篇
  1956年   6篇
  1955年   10篇
  1954年   6篇
  1946年   7篇
  1945年   5篇
排序方式: 共有720条查询结果,搜索用时 15 毫秒
1.
Summary Larvae of the cabbage white butterfly,Pieris brassicae, have a dietary requirement for linolenic acid (C183n3) and were found to accumulate two other members of the n-3 family, C203n3 and C205n3 (eicosapentaenoic acid) especially in testicular phospholipids. Arachidonic acid was observed in trace amounts only. During diapause the relative titer of eicosapentaenoic acid increased in testicular phospholipids to about 4.2% of the fatty acids. Eicosapentaenoic acid is a possible precursor of prostaglandins, suggesting that prostaglandins of the 3-series predominate in this insect.  相似文献   
2.
The main component of the sex pheromone secretion of femaleDiprion pini L. (Hymenoptera: Diprionidae) from insects collected both in Finland and in France has been identified as athreo-3,7-dimethyl-2-tridecanol (8 ng per female) stereoisomer by GC-MS and synthesis. The secretion also contains lower and higher homologues in small amounts (1–4% of the main component). Combined gas chromatographic-electroantennographic detection showed activity in both natural and esterified extracts (acetates and propionates); the esters of the main component gave the largest responses. The acetates and propionates of the eight stereoisomers of 3,7-dimethyl-2-tridecanol were synthesized from enantiomerically highly enriched (>99% ee) building blocks. The stereochemistry of the main component was established to be (2S,3R,7R)-3,7-dimethyl-2-tridecanol by GC analysis of the natural material. It was purified by liquid chromatography prior to the GC analysis of both its pentafluorobenzoates and its isopropylcarbamates on a non-chiral polar column (ECD) and a chiral column (NPD), respectively. Field tests demonstrated that both the acetate and propionate of the main component (100 g of each applied on cotton roll dispensers) were active in attracting males, with or without the presence of several of the minor compounds. Experiments with smaller amounts of the acetate and the propionate (1 g in France and 50 g in Finland) demonstrated that the propionate was more active than the acetate, and that it also caught more males than a blend of the two compounds.  相似文献   
3.
Summary Corpora allata fromOncopeltus fasciatus incubated in vitro in medium containing 10–5.35 M (1 g/ml) of precocene II lose their ability to secrete juvenile hormone when reimplanted into last instar larvae.Acknowledgments. We thank Mr K. Dorn, Mrs L. Dolezal, Mrs V. Nötzli-Graf, Mr K.H. Trautmann and Mr A. Schuler for technical help, Dr W. Vogel and Dr A. Dübendorfer for valuable discussions.  相似文献   
4.
Stomatal pores, formed by two surrounding guard cells in the epidermis of plant leaves, allow influx of atmospheric carbon dioxide in exchange for transpirational water loss. Stomata also restrict the entry of ozone--an important air pollutant that has an increasingly negative impact on crop yields, and thus global carbon fixation and climate change. The aperture of stomatal pores is regulated by the transport of osmotically active ions and metabolites across guard cell membranes. Despite the vital role of guard cells in controlling plant water loss, ozone sensitivity and CO2 supply, the genes encoding some of the main regulators of stomatal movements remain unknown. It has been proposed that guard cell anion channels function as important regulators of stomatal closure and are essential in mediating stomatal responses to physiological and stress stimuli. However, the genes encoding membrane proteins that mediate guard cell anion efflux have not yet been identified. Here we report the mapping and characterization of an ozone-sensitive Arabidopsis thaliana mutant, slac1. We show that SLAC1 (SLOW ANION CHANNEL-ASSOCIATED 1) is preferentially expressed in guard cells and encodes a distant homologue of fungal and bacterial dicarboxylate/malic acid transport proteins. The plasma membrane protein SLAC1 is essential for stomatal closure in response to CO2, abscisic acid, ozone, light/dark transitions, humidity change, calcium ions, hydrogen peroxide and nitric oxide. Mutations in SLAC1 impair slow (S-type) anion channel currents that are activated by cytosolic Ca2+ and abscisic acid, but do not affect rapid (R-type) anion channel currents or Ca2+ channel function. A low homology of SLAC1 to bacterial and fungal organic acid transport proteins, and the permeability of S-type anion channels to malate suggest a vital role for SLAC1 in the function of S-type anion channels.  相似文献   
5.
tRNase Z: the end is not in sight   总被引:1,自引:0,他引:1  
Although the enzyme tRNase Z has only recently been isolated, a plethora of data has already been acquired concerning the enzyme. tRNase Z is the endonuclease that catalyzes the removal of the tRNA 3′ trailer, yielding the mature tRNA 3′ end ready for CCA addition and aminoacylation. Another substrate cleaved by tRNase Z is the small chromogenic phosphodiester bis(p-nitrophenyl)phosphate (bpNPP), which is the smallest tRNase Z substrate known so far. Hitherto the biological function as tRNA 3′-end processing enzyme has been shown only in one prokaryotic and one eukaryotic organism, respectively. This review summarizes the present information concerning the two tRNase Z substrates pre-tRNA and bpNPP, as well as the metal requirements of tRNase Z enzymes. Received 29 March 2007; received after revision 15 May 2007; accepted 21 May 2007  相似文献   
6.
Using an Affymetrix 10K SNP array to screen for gene copy number changes in breast cancer, we detected a single-gene amplification of the ESR1 gene, which encodes estrogen receptor alpha, at 6q25. A subsequent tissue microarray analysis of more than 2,000 clinical breast cancer samples showed ESR1 amplification in 20.6% of breast cancers. Ninety-nine percent of tumors with ESR1 amplification showed estrogen receptor protein overexpression, compared with 66.6% cancers without ESR1 amplification (P < 0.0001). In 175 women who had received adjuvant tamoxifen monotherapy, survival was significantly longer for women with cancer with ESR1 amplification than for women with estrogen receptor-expressing cancers without ESR1 amplification (P = 0.023). Notably, we also found ESR1 amplification in benign and precancerous breast diseases, suggesting that ESR1 amplification may be a common mechanism in proliferative breast disease and a very early genetic alteration in a large subset of breast cancers.  相似文献   
7.
Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-L?ken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis. We show that RPGRIP1L interacts with nephrocystin-4 and that mutations in the gene encoding nephrocystin-4 (NPHP4) that are known to cause SLSN disrupt this interaction. RPGRIP1L is ubiquitously expressed, and its protein product localizes to basal bodies. Therefore, we analyzed RPGRIP1L as a candidate gene for JBTS and identified loss-of-function mutations in three families with typical JBTS, including the characteristic mid-hindbrain malformation. This work identifies RPGRIP1L as a gene responsible for JBTS and establishes a central role for cilia and basal bodies in the pathophysiology of this disorder.  相似文献   
8.
Hypertriglyceridemia is a hallmark of many disorders, including metabolic syndrome, diabetes, atherosclerosis and obesity. A well-known cause is the deficiency of lipoprotein lipase (LPL), a key enzyme in plasma triglyceride hydrolysis. Mice carrying the combined lipase deficiency (cld) mutation show severe hypertriglyceridemia owing to a decrease in the activity of LPL and a related enzyme, hepatic lipase (HL), caused by impaired maturation of nascent LPL and hepatic lipase polypeptides in the endoplasmic reticulum (ER). Here we identify the gene containing the cld mutation as Tmem112 and rename it Lmf1 (Lipase maturation factor 1). Lmf1 encodes a transmembrane protein with an evolutionarily conserved domain of unknown function that localizes to the ER. A human subject homozygous for a deleterious mutation in LMF1 also shows combined lipase deficiency with concomitant hypertriglyceridemia and associated disorders. Thus, through its profound effect on lipase activity, LMF1 emerges as an important candidate gene in hypertriglyceridemia.  相似文献   
9.
In Parkinson's disease, brain dopamine neurons degenerate most prominently in the substantia nigra. Neurotrophic factors promote survival, differentiation and maintenance of neurons in developing and adult vertebrate nervous system. The most potent neurotrophic factor for dopamine neurons described so far is the glial-cell-line-derived neurotrophic factor (GDNF). Here we have identified a conserved dopamine neurotrophic factor (CDNF) as a trophic factor for dopamine neurons. CDNF, together with its previously described vertebrate and invertebrate homologue the mesencephalic-astrocyte-derived neurotrophic factor, is a secreted protein with eight conserved cysteine residues, predicting a unique protein fold and defining a new, evolutionarily conserved protein family. CDNF (Armetl1) is expressed in several tissues of mouse and human, including the mouse embryonic and postnatal brain. In vivo, CDNF prevented the 6-hydroxydopamine (6-OHDA)-induced degeneration of dopaminergic neurons in a rat experimental model of Parkinson's disease. A single injection of CDNF before 6-OHDA delivery into the striatum significantly reduced amphetamine-induced ipsilateral turning behaviour and almost completely rescued dopaminergic tyrosine-hydroxylase-positive cells in the substantia nigra. When administered four weeks after 6-OHDA, intrastriatal injection of CDNF was able to restore the dopaminergic function and prevent the degeneration of dopaminergic neurons in substantia nigra. Thus, CDNF was at least as efficient as GDNF in both experimental settings. Our results suggest that CDNF might be beneficial for the treatment of Parkinson's disease.  相似文献   
10.
Shell structure and magic numbers in atomic nuclei were generally explained by pioneering work that introduced a strong spin-orbit interaction to the nuclear shell model potential. However, knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), enhanced correlations arise between neutrons and protons (two distinct types of fermions) that occupy orbitals with the same quantum numbers. Such correlations have been predicted to favour an unusual type of nuclear superfluidity, termed isoscalar neutron-proton pairing, in addition to normal isovector pairing. Despite many experimental efforts, these predictions have not been confirmed. Here we report the experimental observation of excited states in the N = Z = 46 nucleus (92)Pd. Gamma rays emitted following the (58)Ni((36)Ar,2n)(92)Pd fusion-evaporation reaction were identified using a combination of state-of-the-art high-resolution γ-ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutron-proton coupling scheme, different from the previous prediction. We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling) in the ground and low-lying excited states of the heaviest N = Z nuclei. Such strong, isoscalar neutron-proton correlations would have a considerable impact on the nuclear level structure and possibly influence the dynamics of rapid proton capture in stellar nucleosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号