首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32768篇
  免费   136篇
  国内免费   301篇
系统科学   436篇
丛书文集   539篇
教育与普及   133篇
理论与方法论   134篇
现状及发展   13258篇
研究方法   1224篇
综合类   16811篇
自然研究   670篇
  2013年   360篇
  2012年   647篇
  2011年   1301篇
  2010年   449篇
  2009年   425篇
  2008年   747篇
  2007年   851篇
  2006年   849篇
  2005年   763篇
  2004年   691篇
  2003年   565篇
  2002年   558篇
  2001年   870篇
  2000年   937篇
  1999年   648篇
  1994年   343篇
  1992年   494篇
  1991年   424篇
  1990年   475篇
  1989年   445篇
  1988年   436篇
  1987年   466篇
  1986年   458篇
  1985年   556篇
  1984年   441篇
  1983年   386篇
  1982年   357篇
  1981年   346篇
  1980年   412篇
  1979年   894篇
  1978年   727篇
  1977年   709篇
  1976年   538篇
  1975年   667篇
  1974年   857篇
  1973年   749篇
  1972年   747篇
  1971年   917篇
  1970年   1036篇
  1969年   899篇
  1968年   890篇
  1967年   856篇
  1966年   763篇
  1965年   559篇
  1959年   306篇
  1958年   525篇
  1957年   407篇
  1956年   321篇
  1955年   335篇
  1954年   313篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
481.
Carbon loss from an unprecedented Arctic tundra wildfire   总被引:2,自引:0,他引:2  
Arctic tundra soils store large amounts of carbon (C) in organic soil layers hundreds to thousands of years old that insulate, and in some cases maintain, permafrost soils. Fire has been largely absent from most of this biome since the early Holocene epoch, but its frequency and extent are increasing, probably in response to climate warming. The effect of fires on the C balance of tundra landscapes, however, remains largely unknown. The Anaktuvuk River fire in 2007 burned 1,039 square kilometres of Alaska's Arctic slope, making it the largest fire on record for the tundra biome and doubling the cumulative area burned since 1950 (ref. 5). Here we report that tundra ecosystems lost 2,016?±?435?g?C?m(-2) in the fire, an amount two orders of magnitude larger than annual net C exchange in undisturbed tundra. Sixty per cent of this C loss was from soil organic matter, and radiocarbon dating of residual soil layers revealed that the maximum age of soil C lost was 50 years. Scaled to the entire burned area, the fire released approximately 2.1?teragrams of C to the atmosphere, an amount similar in magnitude to the annual net C sink for the entire Arctic tundra biome averaged over the last quarter of the twentieth century. The magnitude of ecosystem C lost by fire, relative to both ecosystem and biome-scale fluxes, demonstrates that a climate-driven increase in tundra fire disturbance may represent a positive feedback, potentially offsetting Arctic greening and influencing the net C balance of the tundra biome.  相似文献   
482.
S-nitrosylation of NADPH oxidase regulates cell death in plant immunity   总被引:2,自引:0,他引:2  
Yun BW  Feechan A  Yin M  Saidi NB  Le Bihan T  Yu M  Moore JW  Kang JG  Kwon E  Spoel SH  Pallas JA  Loake GJ 《Nature》2011,478(7368):264-268
Changes in redox status are a conspicuous feature of immune responses in a variety of eukaryotes, but the associated signalling mechanisms are not well understood. In plants, attempted microbial infection triggers the rapid synthesis of nitric oxide and a parallel accumulation of reactive oxygen intermediates, the latter generated by NADPH oxidases related to those responsible for the pathogen-activated respiratory burst in phagocytes. Both nitric oxide and reactive oxygen intermediates have been implicated in controlling the hypersensitive response, a programmed execution of plant cells at sites of attempted infection. However, the molecular mechanisms that underpin their function and coordinate their synthesis are unknown. Here we show genetic evidence that increases in cysteine thiols modified using nitric oxide, termed S-nitrosothiols, facilitate the hypersensitive response in the absence of the cell death agonist salicylic acid and the synthesis of reactive oxygen intermediates. Surprisingly, when concentrations of S-nitrosothiols were high, nitric oxide function also governed a negative feedback loop limiting the hypersensitive response, mediated by S-nitrosylation of the NADPH oxidase, AtRBOHD, at Cys 890, abolishing its ability to synthesize reactive oxygen intermediates. Accordingly, mutation of Cys 890 compromised S-nitrosothiol-mediated control of AtRBOHD activity, perturbing the magnitude of cell death development. This cysteine is evolutionarily conserved and specifically S-nitrosylated in both human and fly NADPH oxidase, suggesting that this mechanism may govern immune responses in both plants and animals.  相似文献   
483.
Baulch HM  Stanley EH  Bernhardt ES 《Nature》2011,477(7366):E3; discussion E3-E3; discussion E4
  相似文献   
484.
485.
Jin K  Butch NP  Kirshenbaum K  Paglione J  Greene RL 《Nature》2011,476(7358):73-75
Although it is generally accepted that superconductivity is unconventional in the high-transition-temperature copper oxides, the relative importance of phenomena such as spin and charge (stripe) order, superconductivity fluctuations, proximity to a Mott insulator, a pseudogap phase and quantum criticality are still a matter of debate. In electron-doped copper oxides, the absence of an anomalous pseudogap phase in the underdoped region of the phase diagram and weaker electron correlations suggest that Mott physics and other unidentified competing orders are less relevant and that antiferromagnetic spin fluctuations are the dominant feature. Here we report a study of magnetotransport in thin films of the electron-doped copper oxide La(2?-?x)Ce(x)CuO(4). We show that a scattering rate that is linearly dependent on temperature--a key feature of the anomalous normal state properties of the copper oxides--is correlated with the electron pairing. We also show that an envelope of such scattering surrounds the superconducting phase, surviving to zero temperature when superconductivity is suppressed by magnetic fields. Comparison with similar behaviour found in organic superconductors strongly suggests that the linear dependence on temperature of the resistivity in the electron-doped copper oxides is caused by spin-fluctuation scattering.  相似文献   
486.
The subventricular zone of many adult non-human mammals generates large numbers of new neurons destined for the olfactory bulb. Along the walls of the lateral ventricles, immature neuronal progeny migrate in tangentially oriented chains that coalesce into a rostral migratory stream (RMS) connecting the subventricular zone to the olfactory bulb. The adult human subventricular zone, in contrast, contains a hypocellular gap layer separating the ependymal lining from a periventricular ribbon of astrocytes. Some of these subventricular zone astrocytes can function as neural stem cells in vitro, but their function in vivo remains controversial. An initial report found few subventricular zone proliferating cells and rare migrating immature neurons in the RMS of adult humans. In contrast, a subsequent study indicated robust proliferation and migration in the human subventricular zone and RMS. Here we find that the infant human subventricular zone and RMS contain an extensive corridor of migrating immature neurons before 18 months of age but, contrary to previous reports, this germinal activity subsides in older children and is nearly extinct by adulthood. Surprisingly, during this limited window of neurogenesis, not all new neurons in the human subventricular zone are destined for the olfactory bulb--we describe a major migratory pathway that targets the prefrontal cortex in humans. Together, these findings reveal robust streams of tangentially migrating immature neurons in human early postnatal subventricular zone and cortex. These pathways represent potential targets of neurological injuries affecting neonates.  相似文献   
487.
Morford SL  Houlton BZ  Dahlgren RA 《Nature》2011,477(7362):78-81
Nitrogen (N) limits the productivity of many ecosystems worldwide, thereby restricting the ability of terrestrial ecosystems to offset the effects of rising atmospheric CO(2) emissions naturally. Understanding input pathways of bioavailable N is therefore paramount for predicting carbon (C) storage on land, particularly in temperate and boreal forests. Paradigms of nutrient cycling and limitation posit that new N enters terrestrial ecosystems solely from the atmosphere. Here we show that bedrock comprises a hitherto overlooked source of ecologically available N to forests. We report that the N content of soils and forest foliage on N-rich metasedimentary rocks (350-950?mg?N?kg(-1)) is elevated by more than 50% compared with similar temperate forest sites underlain by N-poor igneous parent material (30-70?mg?N?kg(-1)). Natural abundance N isotopes attribute this difference to rock-derived N: (15)N/(14)N values for rock, soils and plants are indistinguishable in sites underlain by N-rich lithology, in marked contrast to sites on N-poor substrates. Furthermore, forests associated with N-rich parent material contain on average 42% more carbon in above-ground tree biomass and 60% more carbon in the upper 30?cm of the soil than similar sites underlain by N-poor rocks. Our results raise the possibility that bedrock N input may represent an important and overlooked component of ecosystem N and C cycling elsewhere.  相似文献   
488.
In vivo genome editing restores haemostasis in a mouse model of haemophilia   总被引:2,自引:0,他引:2  
Editing of the human genome to correct disease-causing mutations is a promising approach for the treatment of genetic disorders. Genome editing improves on simple gene-replacement strategies by effecting in situ correction of a mutant gene, thus restoring normal gene function under the control of endogenous regulatory elements and reducing risks associated with random insertion into the genome. Gene-specific targeting has historically been limited to mouse embryonic stem cells. The development of zinc finger nucleases (ZFNs) has permitted efficient genome editing in transformed and primary cells that were previously thought to be intractable to such genetic manipulation. In vitro, ZFNs have been shown to promote efficient genome editing via homology-directed repair by inducing a site-specific double-strand break (DSB) at a target locus, but it is unclear whether ZFNs can induce DSBs and stimulate genome editing at a clinically meaningful level in vivo. Here we show that ZFNs are able to induce DSBs efficiently when delivered directly to mouse liver and that, when co-delivered with an appropriately designed gene-targeting vector, they can stimulate gene replacement through both homology-directed and homology-independent targeted gene insertion at the ZFN-specified locus. The level of gene targeting achieved was sufficient to correct the prolonged clotting times in a mouse model of haemophilia B, and remained persistent after induced liver regeneration. Thus, ZFN-driven gene correction can be achieved in vivo, raising the possibility of genome editing as a viable strategy for the treatment of genetic disease.  相似文献   
489.
对广义KS方程建立全离散的广义Hermite谱逼近格式,对离散格式进行先验估计,并证明离散格式关于初值的稳定性.利用广义Hermite函数的某些逼近结果,证明离散格式的收敛性,并得到近似解的误差阶.  相似文献   
490.
用磁控溅射法在加热到400℃的MgO(001)单晶基片上沉积了总厚度为25 nm 的[Fe(0.6 nm)/Fe30.5Pt69.5(1.9 nm)]10 多层连续薄膜, 总成分配比为Fe50Pt50. 然后对其在[500, 900]℃温度范围进行真空热处理, 分析了热处理温度对薄膜表面形貌、晶体结构以及磁特性的影响. 结果表明, 在加热基片上生长的FePt 薄膜, 层间已经发生扩散, 形成无序的A1 相. 经过700℃以上的高温热处理, 薄膜转变为具有(001)织构的L10相FePt 合金, 易磁化轴沿垂直于膜面的方向, 有序度大于0.85, 单轴磁晶各向异性能约2.7×107 erg/cc. 利用扩散后残存的周期性微弱成分起伏, 可以使薄膜在800℃以下保持形貌连续. 用原子力显微镜对薄膜表面进行观察证实, 在780℃进行热处理, 薄膜的表面最平整. 这种优质的连续薄膜可以应用于微加工制作超高密度垂直磁记录阵列介质.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号