首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19062篇
  免费   104篇
  国内免费   237篇
系统科学   414篇
丛书文集   382篇
教育与普及   77篇
理论与方法论   88篇
现状及发展   6395篇
研究方法   889篇
综合类   10584篇
自然研究   574篇
  2014年   156篇
  2013年   299篇
  2012年   534篇
  2011年   1124篇
  2010年   381篇
  2009年   354篇
  2008年   598篇
  2007年   675篇
  2006年   692篇
  2005年   676篇
  2004年   515篇
  2003年   423篇
  2002年   406篇
  2001年   515篇
  2000年   565篇
  1999年   418篇
  1992年   295篇
  1991年   256篇
  1990年   257篇
  1989年   233篇
  1988年   213篇
  1987年   229篇
  1986年   204篇
  1985年   252篇
  1984年   237篇
  1983年   163篇
  1982年   172篇
  1981年   159篇
  1980年   199篇
  1979年   451篇
  1978年   341篇
  1977年   370篇
  1976年   264篇
  1975年   325篇
  1974年   449篇
  1973年   381篇
  1972年   362篇
  1971年   424篇
  1970年   486篇
  1969年   427篇
  1968年   408篇
  1967年   444篇
  1966年   387篇
  1965年   302篇
  1959年   156篇
  1958年   232篇
  1957年   179篇
  1956年   138篇
  1955年   154篇
  1954年   133篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
951.
952.
HAb18G/CD147 is a heavily glycosylated protein containing two immunoglobulin superfamily domains. Our previous studies have indicated that overexpression of HAb18G/CD147 enhances metastatic potentials in human hepatoma cells by disrupting the regulation of store-operated Ca2+ entry by nitric oxide (NO)/cGMP. In the present study, we investigated the structure-function of HAb18G/CD147 by transfecting truncated HAb18G/CD147 fragments into human 7721 hepatoma cells. The inhibitory effect of HAb18G/CD147 on 8-bromo-cGMP-regulated thapsigargin-induced Ca2+ entry was reversed by the expression of either C or N terminus truncated HAb18G/CD147 in T7721C and T7721N cells, respectively. The potential effect of HAb18G/CD147 on metastatic potentials, both adhesion and invasion capacities, of hepatoma cells was abolished in T7721C cells, but not affected in T7721N cells. Release and activation of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were found to be enhanced by the expression of HAb18G/CD147, and this effect was abolished by both truncations. Thapsigargin significantly enhanced release and activation of MMPs (MMP-2 and MMP-9) in non-transfected 7721 cells, and this effect was negatively regulated by SNAP. However, no effects of thapsigargin or SNAP were observed in T7721 cells, and expression of HAb18G/CD147 enhanced secretion and activation of MMPs at a stable and high level. Taken together, these results suggest that both ectodomain and intracellular domains of HAb18G/CD147 are required to mediate the effect of HAb18G/CD147 on the secretion and activation of MMPs and metastasis-related processes in human hepatoma cells by disrupting the regulation of NO/cGMP-sensitive intracellular Ca2+ mobilization although each domain may play different roles.Received 1 April 2004; received after revision 15 June 2004; accepted 22 June 2004  相似文献   
953.
954.
Sex determination and gametogenesis are key processes in human reproduction, and any defect can lead to infertility. We describe here the molecular mechanisms of male sex determination and testis formation; defects in sex determination lead to a female phenotype despite the presence of a Y chromosome, more rarely to a male phenotype with XX chromosomes, or to intersex phenotypes. Interestingly, these phenotypes are often associated with other developmental malformations. In testis, spermatozoa are produced from renewable stem cells in a complex differentiation process called spermatogenesis. Gene expression during spermatogenesis differs to a surprising degree from gene expression in somatic cells, and we discuss here mechanistic differences and their effect on the differentiation process and male fertility.Received 23 January 2004; received after revision 30 March 2004; accepted 6 April 2004  相似文献   
955.
956.
Novel aspects of glypican glycobiology   总被引:5,自引:0,他引:5  
Mutations in glypican genes cause dysmorphic and overgrowth syndromes in men and mice, abnormal development in flies and worms, and defective gastrulation in zebrafish and ascidians. All glypican core proteins share a characteristic pattern of 14 conserved cysteine residues. Upstream from the C-terminal membrane anchorage are 3–4 heparan sulfate attachment sites. Cysteines in glypican-1 can become nitrosylated by nitric oxide in a copper-dependent reaction. When glypican-1 is exposed to ascorbate, nitric oxide is released and participates in deaminative cleavage of heparan sulfate at sites where the glucosamines have a free amino group. This process takes place while glypican-1 recycles via a nonclassical, caveolin-1-associated route. Glypicans are involved in growth factor signalling and transport, e.g. of polyamines. Cargo can be unloaded from heparan sulfate by nitric oxide-dependent degradation. How glypican and its degradation products and the cargo exit from the recycling route is an enigma.Received 27 November 2003; received after revision 8 January 2004; accepted 13 January 2004  相似文献   
957.
What’s new in the renin-angiotensin system?   总被引:6,自引:0,他引:6  
The angiotensin AT(4) receptor was originally defined as the specific, high-affinity binding site for the hexapeptide angiotensin IV (Ang IV). Subsequently, the peptide LVV-hemorphin 7 was also demonstrated to be a bioactive ligand of the AT(4) receptor. Central administration of Ang IV, its analogues or LVV-hemorphin 7 markedly enhance learning and memory in normal rodents and reverse memory deficits observed in animal models of amnesia. The AT(4) receptor has a broad distribution and is found in a range of tissues, including the adrenal gland, kidney, lung and heart. In the kidney Ang IV increases renal cortical blood flow and decreases Na(+) transport in isolated renal proximal tubules. The AT(4) receptor has recently been identified as the transmembrane enzyme, insulin-regulated membrane aminopeptidase (IRAP). IRAP is a type II integral membrane spanning protein belonging to the M1 family of aminopeptidases and is predominantly found in GLUT4 vesicles in insulin-responsive cells. Three hypotheses for the memory-potentiating effects of the AT(4) receptor/IRAP ligands, Ang IV and LVV-hemorphin 7, are proposed: (i) acting as potent inhibitors of IRAP, they may prolong the action of endogenous promnestic peptides; (ii) they may modulate glucose uptake by modulating trafficking of GLUT4; (iii) IRAP may act as a receptor, transducing the signal initiated by ligand binding to its C-terminal domain to the intracellular domain that interacts with several cytoplasmic proteins.  相似文献   
958.
DNA mutations and aberrations are a problem for all forms of life. Eukaryotes specifically have developed ways of identifying and repairing various DNA mutations in a complex and refractory chromatin environment. The chromatin structure is much more than a packaging unit for DNA; it is dynamic. Cells utilize and manipulate chromatin for gene regulation, genome organization and maintenance of genome integrity. Once a DNA aberration has occurred, the various DNA repair machineries interact with chromatin proteins, such as the histone variant H2A.X, and chromatin remodeling machines of the SWI/SNF family to gain access and repair the lesion in a timely manner. Recent studies have thus begun to address the roles of chromatin proteins in DNA repair as well as to dissect the functions of DNA repair machinery in vitro on more physiological, nucleosomal templates.  相似文献   
959.
Gelsolin superfamily proteins: key regulators of cellular functions   总被引:10,自引:0,他引:10  
Cytoskeletal rearrangement occurs in a variety of cellular processes and involves a wide spectrum of proteins. Among these, the gelsolin superfamily proteins control actin organization by severing filaments, capping filament ends and nucleating actin assembly [1]. Gelsolin is the founding member of this family, which now contains at least another six members: villin, adseverin, capG, advillin, supervillin and flightless I. In addition to their respective role in actin filament remodeling, these proteins have some specific and apparently non-overlapping particular roles in several cellular processes, including cell motility, control of apoptosis and regulation of phagocytosis (summarized in table 1). Evidence suggests that proteins belonging to the gelsolin superfamily may be involved in other processes, including gene expression regulation. This review will focus on some of the known functions of the gelsolin superfamily proteins, thus providing a basis for reflection on other possible and as yet incompletely understood roles for these proteins.  相似文献   
960.
The kinesin-related protein HsEg5 plays essential roles in mitotic spindle dynamics. Although inhibition of HsEg5 has been suggested as an aid in cancer treatment, the effects of such inhibition on human cells have not been characterized. Here we studied the effects of monastrol, an allosteric HsEg5 inhibitor, on AGS and HT29 cell lines and compared them to those of taxol. While both cell lines were similarly sensitive to taxol, AGS cells were more sensitive to monastrol. The differences in sensitivity were determined by the degree of inhibitory effect on cell proliferation, reversibility of monastrol-induced G2/M arrest, intracellular phenotypes and induction of apoptosis. In both cell lines, monastrol-induced apoptosis was accompanied by mitochondrial membrane depolarization and poly-ADP-ribose polymerase 1 cleavage. In AGS, but not HT29 cells, monastrol-induced apoptosis involved a prominent cleavage of procaspases 8 and 3. While in AGS cells, monastrol induced the formation of symmetric microtubule asters only, in HT29 cells, asymmetric asters were also formed, which may be related to specific HsEg5 functions in HT29 cells.Received 18 February 2004; received after revision 30 May 2004; accepted 16 June 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号