首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   1篇
系统科学   4篇
教育与普及   1篇
理论与方法论   3篇
现状及发展   32篇
研究方法   29篇
综合类   117篇
自然研究   3篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   16篇
  2011年   32篇
  2010年   6篇
  2009年   2篇
  2008年   19篇
  2007年   13篇
  2006年   12篇
  2005年   15篇
  2004年   14篇
  2003年   15篇
  2002年   11篇
  2001年   1篇
  2000年   2篇
  1992年   1篇
  1990年   1篇
  1974年   2篇
  1971年   1篇
  1967年   2篇
排序方式: 共有189条查询结果,搜索用时 15 毫秒
81.
Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.  相似文献   
82.
More than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land?a key diagnostic criterion of the effects of climate change and variability?remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network, meteorological and remote-sensing observations, and a machine-learning algorithm. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1?±?1.0?millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Ni?o event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science.  相似文献   
83.
Neuser K  Triphan T  Mronz M  Poeck B  Strauss R 《Nature》2008,453(7199):1244-1247
Flexible goal-driven orientation requires that the position of a target be stored, especially in case the target moves out of sight. The capability to retain, recall and integrate such positional information into guiding behaviour has been summarized under the term spatial working memory. This kind of memory contains specific details of the presence that are not necessarily part of a long-term memory. Neurophysiological studies in primates indicate that sustained activity of neurons encodes the sensory information even though the object is no longer present. Furthermore they suggest that dopamine transmits the respective input to the prefrontal cortex, and simultaneous suppression by GABA spatially restricts this neuronal activity. Here we show that Drosophila melanogaster possesses a similar spatial memory during locomotion. Using a new detour setup, we show that flies can remember the position of an object for several seconds after it has been removed from their environment. In this setup, flies are temporarily lured away from the direction towards their hidden target, yet they are thereafter able to aim for their former target. Furthermore, we find that the GABAergic (stainable with antibodies against GABA) ring neurons of the ellipsoid body in the central brain are necessary and their plasticity is sufficient for a functional spatial orientation memory in flies. We also find that the protein kinase S6KII (ignorant) is required in a distinct subset of ring neurons to display this memory. Conditional expression of S6KII in these neurons only in adults can restore the loss of the orientation memory of the ignorant mutant. The S6KII signalling pathway therefore seems to be acutely required in the ring neurons for spatial orientation memory in flies.  相似文献   
84.
A skin microRNA promotes differentiation by repressing 'stemness'   总被引:6,自引:0,他引:6  
Yi R  Poy MN  Stoffel M  Fuchs E 《Nature》2008,452(7184):225-229
In stratified epithelial tissues, homeostasis relies on the self-renewing capacity of stem cells located within the innermost basal layer. As basal cells become suprabasal, they lose proliferative potential and embark on a terminal differentiation programme. Here, we show that microRNA-203 is induced in the skin concomitantly with stratification and differentiation. By altering miR-203's spatiotemporal expression in vivo, we show that miR-203 promotes epidermal differentiation by restricting proliferative potential and inducing cell-cycle exit. We identify p63 as one of the conserved targets of miR-203 across vertebrates. Notably, p63 is an essential regulator of stem-cell maintenance in stratified epithelial tissues. We show that miR-203 directly represses the expression of p63: it fails to switch off suprabasally when either Dicer1 or miR-203 is absent and it becomes repressed basally when miR-203 is prematurely expressed. Our findings suggest that miR-203 defines a molecular boundary between proliferative basal progenitors and terminally differentiating suprabasal cells, ensuring proper identity of neighbouring layers.  相似文献   
85.
Mass is the most fundamental parameter of a star, yet it is also one of the most difficult to measure directly. In general, astronomers estimate stellar masses by determining the luminosity and using the 'mass-luminosity' relationship, but this relationship has never been accurately calibrated for young, low-mass stars and brown dwarfs. Masses for these low-mass objects are therefore constrained only by theoretical models. A new high-contrast adaptive optics camera enabled the discovery of a young (50 million years) companion only 0.156 arcseconds (2.3 au) from the more luminous (> 120 times brighter) star AB Doradus A. Here we report a dynamical determination of the mass of the newly resolved low-mass companion AB Dor C, whose mass is 0.090 +/- 0.005 solar masses. Given its measured 1-2-micrometre luminosity, we have found that the standard mass-luminosity relations overestimate the near-infrared luminosity of such objects by about a factor of approximately 2.5 at young ages. The young, cool objects hitherto thought to be substellar in mass are therefore about twice as massive, which means that the frequency of brown dwarfs and planetary mass objects in young stellar clusters has been overestimated.  相似文献   
86.
Oxytocin increases trust in humans   总被引:3,自引:0,他引:3  
Kosfeld M  Heinrichs M  Zak PJ  Fischbacher U  Fehr E 《Nature》2005,435(7042):673-676
Trust pervades human societies. Trust is indispensable in friendship, love, families and organizations, and plays a key role in economic exchange and politics. In the absence of trust among trading partners, market transactions break down. In the absence of trust in a country's institutions and leaders, political legitimacy breaks down. Much recent evidence indicates that trust contributes to economic, political and social success. Little is known, however, about the biological basis of trust among humans. Here we show that intranasal administration of oxytocin, a neuropeptide that plays a key role in social attachment and affiliation in non-human mammals, causes a substantial increase in trust among humans, thereby greatly increasing the benefits from social interactions. We also show that the effect of oxytocin on trust is not due to a general increase in the readiness to bear risks. On the contrary, oxytocin specifically affects an individual's willingness to accept social risks arising through interpersonal interactions. These results concur with animal research suggesting an essential role for oxytocin as a biological basis of prosocial approach behaviour.  相似文献   
87.
A gene expression map of Arabidopsis thaliana development   总被引:3,自引:0,他引:3  
  相似文献   
88.
89.
90.
Rapidly renewing epithelial tissues such as the intestinal epithelium require precise tuning of intercellular adhesion and proliferation to preserve barrier integrity. Here, we provide evidence that desmoglein 2 (Dsg2), an adhesion molecule of desmosomes, controls cell adhesion and proliferation via epidermal growth factor receptor (EGFR) signaling. Dsg2 is required for EGFR localization at intercellular junctions as well as for Src-mediated EGFR activation. Src binds to EGFR and is required for localization of EGFR and Dsg2 to cell–cell contacts. EGFR is critical for cell adhesion and barrier recovery. In line with this, Dsg2-deficient enterocytes display impaired barrier properties and increased cell proliferation. Mechanistically, Dsg2 directly interacts with EGFR and undergoes heterotypic-binding events on the surface of living enterocytes via its extracellular domain as revealed by atomic force microscopy. Thus, our study reveals a new mechanism by which Dsg2 via Src shapes EGFR function towards cell adhesion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号