首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13513篇
  免费   33篇
  国内免费   61篇
系统科学   68篇
丛书文集   82篇
教育与普及   41篇
理论与方法论   90篇
现状及发展   5339篇
研究方法   801篇
综合类   6929篇
自然研究   257篇
  2013年   123篇
  2012年   321篇
  2011年   582篇
  2010年   145篇
  2009年   72篇
  2008年   305篇
  2007年   397篇
  2006年   343篇
  2005年   378篇
  2004年   351篇
  2003年   333篇
  2002年   351篇
  2001年   386篇
  2000年   371篇
  1999年   274篇
  1992年   239篇
  1991年   183篇
  1990年   209篇
  1989年   194篇
  1988年   204篇
  1987年   208篇
  1986年   161篇
  1985年   251篇
  1984年   171篇
  1983年   149篇
  1982年   170篇
  1981年   135篇
  1980年   172篇
  1979年   385篇
  1978年   294篇
  1977年   290篇
  1976年   251篇
  1975年   287篇
  1974年   311篇
  1973年   308篇
  1972年   344篇
  1971年   345篇
  1970年   429篇
  1969年   363篇
  1968年   383篇
  1967年   352篇
  1966年   320篇
  1965年   203篇
  1959年   107篇
  1958年   204篇
  1957年   137篇
  1956年   122篇
  1955年   105篇
  1954年   81篇
  1948年   83篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
141.
The mitochondrial H+-ATP synthase is a primary hub of cellular homeostasis by providing the energy required to sustain cellular activity and regulating the production of signaling molecules that reprogram nuclear activity needed for adaption to changing cues. Herein, we summarize findings regarding the regulation of the activity of the H+-ATP synthase by its physiological inhibitor, the ATPase inhibitory factor 1 (IF1) and their functional role in cellular homeostasis. First, we outline the structure and the main molecular mechanisms that regulate the activity of the enzyme. Next, we describe the molecular biology of IF1 and summarize the regulation of IF1 expression and activity as an inhibitor of the H+-ATP synthase emphasizing the role of IF1 as a main driver of energy rewiring and cellular signaling in cancer. Findings in transgenic mice in vivo indicate that the overexpression of IF1 is sufficient to reprogram energy metabolism to an enhanced glycolysis and activate reactive oxygen species (ROS)-dependent signaling pathways that promote cell survival. These findings are placed in the context of mitohormesis, a program in which a mild mitochondrial stress triggers adaptive cytoprotective mechanisms that improve lifespan. In this regard, we emphasize the role played by the H+-ATP synthase in modulating signaling pathways that activate the mitohormetic response, namely ATP, ROS and target of rapamycin (TOR). Overall, we aim to highlight the relevant role of the H+-ATP synthase and of IF1 in cellular physiology and the need of additional studies to decipher their contributions to aging and age-related diseases.  相似文献   
142.
Vascular development is a dynamic process that relies on the coordinated expression of numerous genes, but the factors that regulate gene expression during blood vessel development are not well defined. ATP-dependent chromatin-remodeling complexes are gaining attention for their specific temporal and spatial effects on gene expression during vascular development. Genetic mutations in chromatin-remodeling complex subunits are revealing roles for the complexes in vascular signaling pathways at discrete developmental time points. Phenotypic analysis of these models at various stages of vascular development will continue to expand our understanding of how chromatin remodeling impacts new blood vessel growth. Such research could also provide novel therapeutic targets for the treatment of vascular pathologies.  相似文献   
143.
Studies in several areas in Arizona and New Mexico show that dwarf mistletoe ( Arceuthobium douglasii ) is rare in young Douglas-firs growing under infected overstories. Less than 5% of the Douglas-firs under 26 years old and less than 6% of those under 1.4m tall were infected in 77 mistletoe-infested stands. Both percent infection and mean dwarf mistletoe rating of young Douglas-firs increased as tree age, height, and stand dwarf mistletoe ratings increased.  相似文献   
144.
One of the most important current scientific paradoxes is the economy with which nature uses genes. In all higher animals studied, we have found many fewer genes than we would have previously expected. The functional outputs of the eventual products of genes seem to be far more complex than the more restricted blueprint. In higher organisms, the functions of many proteins are modulated by post-translational modifications (PTMs). These alterations of amino-acid side chains lead to higher structural and functional protein diversity and are, therefore, a leading contender for an explanation for this seeming incongruity. Natural protein production methods typically produce PTM mixtures within which function is difficult to dissect or control. Until now it has not been possible to access pure mimics of complex PTMs. Here we report a chemical tagging approach that enables the attachment of multiple modifications to bacterially expressed (bare) protein scaffolds: this approach allows reconstitution of functionally effective mimics of higher organism PTMs. By attaching appropriate modifications at suitable distances in the widely-used LacZ reporter enzyme scaffold, we created protein probes that included sensitive systems for detection of mammalian brain inflammation and disease. Through target synthesis of the desired modification, chemistry provides a structural precision and an ability to retool with a chosen PTM in a manner not available to other approaches. In this way, combining chemical control of PTM with readily available protein scaffolds provides a systematic platform for creating probes of protein-PTM interactions. We therefore anticipate that this ability to build model systems will allow some of this gene product complexity to be dissected, with the aim of eventually being able to completely duplicate the patterns of a particular protein's PTMs from an in vivo assay into an in vitro system.  相似文献   
145.
146.
147.
A fundamental question in nuclear physics is what combinations of neutrons and protons can make up a nucleus. Many hundreds of exotic neutron-rich isotopes have never been observed; the limit of how many neutrons a given number of protons can bind is unknown for all but the lightest elements, owing to the delicate interplay between single particle and collective quantum effects in the nucleus. This limit, known as the neutron drip line, provides a benchmark for models of the atomic nucleus. Here we report a significant advance in the determination of this limit: the discovery of two new neutron-rich isotopes--40Mg and 42Al--that are predicted to be drip-line nuclei. In the past, several attempts to observe 40Mg were unsuccessful; moreover, the observation of 42Al provides an experimental indication that the neutron drip line may be located further towards heavier isotopes in this mass region than is currently believed. In stable nuclei, attractive pairing forces enhance the stability of isotopes with even numbers of protons and neutrons. In contrast, the present work shows that nuclei at the drip line gain stability from an unpaired proton, which narrows the shell gaps and provides the opportunity to bind many more neutrons.  相似文献   
148.
The ability of mass spectrometry to generate intact biomolecular ions efficiently in the gas phase has led to its widespread application in metabolomics, proteomics, biological imaging, biomarker discovery and clinical assays (namely neonatal screens). Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization have been at the forefront of these developments. However, matrix application complicates the use of MALDI for cellular, tissue, biofluid and microarray analysis and can limit the spatial resolution because of the matrix crystal size (typically more than 10 mum), sensitivity and detection of small compounds (less than 500 Da). Secondary-ion mass spectrometry has extremely high lateral resolution (100 nm) and has found biological applications although the energetic desorption/ionization is a limitation owing to molecular fragmentation. Here we introduce nanostructure-initiator mass spectrometry (NIMS), a tool for spatially defined mass analysis. NIMS uses 'initiator' molecules trapped in nanostructured surfaces or 'clathrates' to release and ionize intact molecules adsorbed on the surface. This surface responds to both ion and laser irradiation. The lateral resolution (ion-NIMS about 150 nm), sensitivity, matrix-free and reduced fragmentation of NIMS allows direct characterization of peptide microarrays, direct mass analysis of single cells, tissue imaging, and direct characterization of blood and urine.  相似文献   
149.
South-polar features on Venus similar to those near the north pole   总被引:1,自引:0,他引:1  
Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright 'dipole' feature surrounded by a cold 'collar' at its north pole. The polar dipole is a 'double-eye' feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus' south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号