首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   0篇
现状及发展   15篇
研究方法   5篇
综合类   40篇
自然研究   1篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2013年   1篇
  2012年   7篇
  2011年   15篇
  2010年   3篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   9篇
  2003年   2篇
  2002年   2篇
  1996年   1篇
  1979年   1篇
  1970年   1篇
排序方式: 共有61条查询结果,搜索用时 406 毫秒
51.
While the availability of pluripotent stem cells has opened new prospects for generating neural donor cells for nervous system repair, their capability to integrate with adult brain tissue in a structurally relevant way is still largely unresolved. We addressed the potential of human embryonic stem cell-derived long-term self-renewing neuroepithelial stem cells (lt-NES cells) to establish axonal projections after transplantation into the adult rodent brain. Transgenic and species-specific markers were used to trace the innervation pattern established by transplants in the hippocampus and motor cortex. In vitro, lt-NES cells formed a complex axonal network within several weeks after the initiation of differentiation and expressed a composition of surface receptors known to be instrumental in axonal growth and pathfinding. In vivo, these donor cells adopted projection patterns closely mimicking endogenous projections in two different regions of the adult rodent brain. Hippocampal grafts placed in the dentate gyrus projected to both the ipsilateral and contralateral pyramidal cell layers, while axons of donor neurons placed in the motor cortex extended via the external and internal capsule into the cervical spinal cord and via the corpus callosum into the contralateral cortex. Interestingly, acquisition of these region-specific projection profiles was not correlated with the adoption of a regional phenotype. Upon reaching their destination, human axons established ultrastructural correlates of synaptic connections with host neurons. Together, these data indicate that neurons derived from human pluripotent stem cells are endowed with a remarkable potential to establish orthotopic long-range projections in the adult mammalian brain.  相似文献   
52.
53.
Chemicals can elicit T-cell-mediated diseases such as allergic contact dermatitis and adverse drug reactions. Therefore, testing of chemicals, drugs and protein allergens for hazard identification and risk assessment is essential in regulatory toxicology. The seventh amendment of the EU Cosmetics Directive now prohibits the testing of cosmetic ingredients in mice, guinea pigs and other animal species to assess their sensitizing potential. In addition, the EU Chemicals Directive REACh requires the retesting of more than 30,000 chemicals for different toxicological endpoints, including sensitization, requiring vast numbers of animals. Therefore, alternative methods are urgently needed to eventually replace animal testing. Here, we summarize the outcome of an expert meeting in Rome on 7 November 2009 on the development of T-cell-based in vitro assays as tools in immunotoxicology to identify hazardous chemicals and drugs. In addition, we provide an overview of the development of the field over the last two decades.  相似文献   
54.
The present study examined the effect of GLP-1(1-37) on chemokine-induced CD4-positive lymphocyte migration as an early and critical step in atherogenesis. Pretreatment with GLP-1(1-37) reduced the SDF-induced migration of isolated human CD4-positive lymphocytes in a concentration-dependent manner. Similar effects were seen when RANTES was used as a chemokine. GLP-1(1-37)’s effect on CD4-positive lymphocyte migration was mediated through an early inhibition of chemokine-induced PI-3 kinase activity. Downstream, GLP-1(1-37) inhibited SDF-induced phosphorylation of MLC and cofilin and limited f-actin formation as well as ICAM3 translocation. Furthermore, exendin-4 inhibited SDF-induced migration of CD4-positive lymphocytes similarly to GLP-1(1-37), and transfection of these cells with GLP-1 receptor siRNA abolished GLP-1(1-37)’s action on chemokine-induced ICAM3 translocation, suggesting an effect mediated via the GLP-1 receptor. Thus, GLP-1(1-37) inhibits chemokine-induced CD4-positive lymphocyte migration by inhibition of the PI3-kinase pathway and via the GLP-1 receptor. This effect provides a potential novel mechanism for how GLP-1(1-37) may modulate vascular disease.  相似文献   
55.
 可见光通信(VLC)有效结合了发光二极管(LED)的绿色照明和通信两大优点,是无线光通信的研究热点之一。基于相机VLC系统(简称OCC系统)在智能手机越来越普及的潮流下受到了广泛的关注和研究。OCC系统以照明LED为信号光源而以相机中图像传感器(IS)为信号接收器件,具有天然空间分集接收能力,因此具有广泛的应用前景。由于IS与传统光电二极管(PD)在可见光信号的接收与处理过程有明显不同,原有基于PD的VLC相关通信技术无法直接应用于基于IS的VLC系统。本文阐述了OCC系统的关键技术,并给出了相关应用场景。  相似文献   
56.
Krishnan M  Mojarad N  Kukura P  Sandoghdar V 《Nature》2010,467(7316):692-695
The ability to trap an object-whether a single atom or a macroscopic entity-affects fields as diverse as quantum optics, soft condensed-matter physics, biophysics and clinical medicine. Many sophisticated methodologies have been developed to counter the randomizing effect of Brownian motion in solution, but stable trapping of nanometre-sized objects remains challenging. Optical tweezers are widely used traps, but require sufficiently polarizable objects and thus are unable to manipulate small macromolecules. Confinement of single molecules has been achieved using electrokinetic feedback guided by tracking of a fluorescent label, but photophysical constraints limit the trap stiffness and lifetime. Here we show that a fluidic slit with appropriately tailored topography has a spatially modulated electrostatic potential that can trap and levitate charged objects in solution for up to several hours. We illustrate this principle with gold particles, polymer beads and lipid vesicles with diameters of tens of nanometres, which are all trapped without external intervention and independently of their mass and dielectric function. The stiffness and stability of our electrostatic trap is easily tuned by adjusting the system geometry and the ionic strength of the solution, and it lends itself to integration with other manipulation mechanisms. We anticipate that these features will allow its use for contact-free confinement of single proteins and macromolecules, and the sorting and fractionation of nanometre-sized objects or their assembly into high-density arrays.  相似文献   
57.
58.
The control of quantum systems is of fundamental scientific interest and promises powerful applications and technologies. Impressive progress has been achieved in isolating quantum systems from the environment and coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled coupling to an environment remains largely unexplored. Here we realize an experimental toolbox for simulating an open quantum system with up to five quantum bits (qubits). Using a quantum computing architecture with trapped ions, we combine multi-qubit gates with optical pumping to implement coherent operations and dissipative processes. We illustrate our ability to engineer the open-system dynamics through the dissipative preparation of entangled states, the simulation of coherent many-body spin interactions, and the quantum non-demolition measurement of multi-qubit observables. By adding controlled dissipation to coherent operations, this work offers novel prospects for open-system quantum simulation and computation.  相似文献   
59.
Bakr WS  Preiss PM  Tai ME  Ma R  Simon J  Greiner M 《Nature》2011,480(7378):500-503
Interaction blockade occurs when strong interactions in a confined, few-body system prevent a particle from occupying an otherwise accessible quantum state. Blockade phenomena reveal the underlying granular nature of quantum systems and allow for the detection and manipulation of the constituent particles, be they electrons, spins, atoms or photons. Applications include single-electron transistors based on electronic Coulomb blockade and quantum logic gates in Rydberg atoms. Here we report a form of interaction blockade that occurs when transferring ultracold atoms between orbitals in an optical lattice. We call this orbital excitation blockade (OEB). In this system, atoms at the same lattice site undergo coherent collisions described by a contact interaction whose strength depends strongly on the orbital wavefunctions of the atoms. We induce coherent orbital excitations by modulating the lattice depth, and observe staircase-like excitation behaviour as we cross the interaction-split resonances by tuning the modulation frequency. As an application of OEB, we demonstrate algorithmic cooling of quantum gases: a sequence of reversible OEB-based quantum operations isolates the entropy in one part of the system and then an irreversible step removes the entropy from the gas. This technique may make it possible to cool quantum gases to have the ultralow entropies required for quantum simulation of strongly correlated electron systems. In addition, the close analogy between OEB and dipole blockade in Rydberg atoms provides a plan for the implementation of two-quantum-bit gates in a quantum computing architecture with natural scalability.  相似文献   
60.
Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号