首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   0篇
系统科学   9篇
丛书文集   1篇
理论与方法论   1篇
现状及发展   42篇
研究方法   36篇
综合类   96篇
自然研究   4篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   20篇
  2011年   29篇
  2010年   9篇
  2008年   9篇
  2007年   12篇
  2006年   14篇
  2005年   13篇
  2004年   18篇
  2003年   13篇
  2002年   11篇
  1992年   1篇
  1986年   3篇
  1985年   8篇
  1984年   8篇
  1982年   1篇
  1981年   1篇
  1977年   2篇
排序方式: 共有189条查询结果,搜索用时 906 毫秒
81.
Ng SF  Lin RC  Laybutt DR  Barres R  Owens JA  Morris MJ 《Nature》2010,467(7318):963-966
The global prevalence of obesity is increasing across most ages in both sexes. This is contributing to the early emergence of type 2 diabetes and its related epidemic. Having either parent obese is an independent risk factor for childhood obesity. Although the detrimental impacts of diet-induced maternal obesity on adiposity and metabolism in offspring are well established, the extent of any contribution of obese fathers is unclear, particularly the role of non-genetic factors in the causal pathway. Here we show that paternal high-fat-diet (HFD) exposure programs β-cell 'dysfunction' in rat F(1) female offspring. Chronic HFD consumption in Sprague-Dawley fathers induced increased body weight, adiposity, impaired glucose tolerance and insulin sensitivity. Relative to controls, their female offspring had an early onset of impaired insulin secretion and glucose tolerance that worsened with time, and normal adiposity. Paternal HFD altered the expression of 642 pancreatic islet genes in adult female offspring (P?相似文献   
82.
JL Lefebvre  D Kostadinov  WV Chen  T Maniatis  JR Sanes 《Nature》2012,488(7412):517-521
Dendritic arborizations of many neurons are patterned by a process called self-avoidance, in which branches arising from a single neuron repel each other. By minimizing gaps and overlaps within the arborization, self-avoidance facilitates complete coverage of a neuron’s territory by its neurites. Remarkably, some neurons that display self-avoidance interact freely with other neurons of the same subtype, implying that they discriminate self from non-self. Here we demonstrate roles for the clustered protocadherins (Pcdhs) in dendritic self-avoidance and self/non-self discrimination. The Pcdh locus encodes 58 related cadherin-like transmembrane proteins, at least some of which exhibit isoform-specific homophilic adhesion in heterologous cells and are expressed stochastically and combinatorially in single neurons. Deletion of all 22 Pcdh genes in the mouse γ-subcluster (Pcdhg genes) disrupts self-avoidance of dendrites in retinal starburst amacrine cells (SACs) and cerebellar Purkinje cells. Further genetic analysis of SACs showed that Pcdhg proteins act cell-autonomously during development, and that replacement of the 22 Pcdhg proteins with a single isoform restores self-avoidance. Moreover, expression of the same single isoform in all SACs decreases interactions among dendrites of neighbouring SACs (heteroneuronal interactions). These results suggest that homophilic Pcdhg interactions between sibling neurites (isoneuronal interactions) generate a repulsive signal that leads to self-avoidance. In this model, heteroneuronal interactions are normally permitted because dendrites seldom encounter a matched set of Pcdhg proteins unless they emanate from the same soma. In many respects, our results mirror those reported for Dscam1 (Down syndrome cell adhesion molecule) in Drosophila: this complex gene encodes thousands of recognition molecules that exhibit stochastic expression and isoform-specific interactions, and mediate both self-avoidance and self/non-self discrimination. Thus, although insect Dscam and vertebrate Pcdh proteins share no sequence homology, they seem to underlie similar strategies for endowing neurons with distinct molecular identities and patterning their arborizations.  相似文献   
83.
Biological dinitrogen fixation provides the largest input of nitrogen to the oceans, therefore exerting important control on the ocean's nitrogen inventory and primary productivity. Nitrogen-isotope data from ocean sediments suggest that the marine-nitrogen inventory has been balanced for the past 3,000?years (ref. 4). Producing a balanced marine-nitrogen budget based on direct measurements has proved difficult, however, with nitrogen loss exceeding the gain from dinitrogen fixation by approximately 200?Tg?N?yr?1 (refs 5, 6). Here we present data from the Atlantic Ocean and show that the most widely used method of measuring oceanic N2-fixation rates underestimates the contribution of N2-fixing microorganisms (diazotrophs) relative to a newly developed method. Using molecular techniques to quantify the abundance of specific clades of diazotrophs in parallel with rates of 15N2 incorporation into particulate organic matter, we suggest that the difference between N2-fixation rates measured with the established method and those measured with the new method can be related to the composition of the diazotrophic community. Our data show that in areas dominated by Trichodesmium, the established method underestimates N2-fixation rates by an average of 62%. We also find that the newly developed method yields N2-fixation rates more than six times higher than those from the established method when unicellular, symbiotic cyanobacteria and γ-proteobacteria dominate the diazotrophic community. On the basis of average areal rates measured over the Atlantic Ocean, we calculated basin-wide N2-fixation rates of 14?±?1?Tg?N?yr?1 and 24?±1?Tg?N?yr?1 for the established and new methods, respectively. If our findings can be extrapolated to other ocean basins, this suggests that the global marine N2-fixation rate derived from direct measurements may increase from 103?±?8?Tg?N?yr?1 to 177?±?8?Tg?N?yr?1, and that the contribution of N2 fixers other than Trichodesmium is much more significant than was previously thought.  相似文献   
84.
Calorie restriction (CR), a reduction of 10–40% in intake of a nutritious diet, is often reported as the most robust non-genetic mechanism to extend lifespan and healthspan. CR is frequently used as a tool to understand mechanisms behind ageing and age-associated diseases. In addition to and independently of increasing lifespan, CR has been reported to delay or prevent the occurrence of many chronic diseases in a variety of animals. Beneficial effects of CR on outcomes such as immune function, motor coordination and resistance to sarcopenia in rhesus monkeys have recently been reported. We report here that a CR regimen implemented in young and older age rhesus monkeys at the National Institute on Aging (NIA) has not improved survival outcomes. Our findings contrast with an ongoing study at the Wisconsin National Primate Research Center (WNPRC), which reported improved survival associated with 30% CR initiated in adult rhesus monkeys (7–14?years) and a preliminary report with a small number of CR monkeys. Over the years, both NIA and WNPRC have extensively documented beneficial health effects of CR in these two apparently parallel studies. The implications of the WNPRC findings were important as they extended CR findings beyond the laboratory rodent and to a long-lived primate. Our study suggests a separation between health effects, morbidity and mortality, and similar to what has been shown in rodents, study design, husbandry and diet composition may strongly affect the life-prolonging effect of CR in a long-lived nonhuman primate.  相似文献   
85.
86.
Frontotemporal dementia (FTD) is the second most common cause of dementia in people under the age of 65 years. A large proportion of FTD patients (35-50%) have a family history of dementia, consistent with a strong genetic component to the disease. In 1998, mutations in the gene encoding the microtubule-associated protein tau (MAPT) were shown to cause familial FTD with parkinsonism linked to chromosome 17q21 (FTDP-17). The neuropathology of patients with defined MAPT mutations is characterized by cytoplasmic neurofibrillary inclusions composed of hyperphosphorylated tau. However, in multiple FTD families with significant evidence for linkage to the same region on chromosome 17q21 (D17S1787-D17S806), mutations in MAPT have not been found and the patients consistently lack tau-immunoreactive inclusion pathology. In contrast, these patients have ubiquitin (ub)-immunoreactive neuronal cytoplasmic inclusions and characteristic lentiform ub-immunoreactive neuronal intranuclear inclusions. Here we demonstrate that in these families, FTD is caused by mutations in progranulin (PGRN) that are likely to create null alleles. PGRN is located 1.7 Mb centromeric of MAPT on chromosome 17q21.31 and encodes a 68.5-kDa secreted growth factor involved in the regulation of multiple processes including development, wound repair and inflammation. PGRN has also been strongly linked to tumorigenesis. Moreover, PGRN expression is increased in activated microglia in many neurodegenerative diseases including Creutzfeldt-Jakob disease, motor neuron disease and Alzheimer's disease. Our results identify mutations in PGRN as a cause of neurodegenerative disease and indicate the importance of PGRN function for neuronal survival.  相似文献   
87.
Hirschsprung disease (HSCR), the most common hereditary cause of intestinal obstruction, shows considerable variation and complex inheritance. Coding sequence mutations in RET, GDNF, EDNRB, EDN3 and SOX10 lead to long-segment (L-HSCR) and syndromic HSCR but fail to explain the transmission of the much more common short-segment form (S-HSCR). We conducted a genome scan in families with S-HSCR and identified susceptibility loci at 3p21, 10q11 and 19q12 that seem to be necessary and sufficient to explain recurrence risk and population incidence. The gene at 10q11 is probably RET, supporting its crucial role in all forms of HSCR; however, coding sequence mutations are present in only 40% of linked families, suggesting the importance of noncoding variation. Here we show oligogenic inheritance of S-HSCR, the 3p21 and 19q12 loci as RET-dependent modifiers, and a parent-of-origin effect at RET. This study demonstrates by a complete genetic dissection why the inheritance pattern of S-HSCR is nonmendelian.  相似文献   
88.
Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex   总被引:39,自引:0,他引:39  
SCF complexes are the largest family of E3 ubiquitin-protein ligases and mediate the ubiquitination of diverse regulatory and signalling proteins. Here we present the crystal structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF complex, which shows that Cul1 is an elongated protein that consists of a long stalk and a globular domain. The globular domain binds the RING finger protein Rbx1 through an intermolecular beta-sheet, forming a two-subunit catalytic core that recruits the ubiquitin-conjugating enzyme. The long stalk, which consists of three repeats of a novel five-helix motif, binds the Skp1-F boxSkp2 protein substrate-recognition complex at its tip. Cul1 serves as a rigid scaffold that organizes the Skp1-F boxSkp2 and Rbx1 subunits, holding them over 100 A apart. The structure suggests that Cul1 may contribute to catalysis through the positioning of the substrate and the ubiquitin-conjugating enzyme, and this model is supported by Cul1 mutations designed to eliminate the rigidity of the scaffold.  相似文献   
89.
Reimann JD  Jackson PK 《Nature》2002,416(6883):850-854
Vertebrate eggs are arrested at metaphase of meiosis II with stable cyclin B and high cyclin B/Cdc2 kinase activity. The ability of the anaphase-promoting complex/cyclosome (APC), an E3 ubiquitin ligase, to trigger cyclin B destruction and metaphase exit is blocked in eggs by the activity of cytostatic factor (CSF) (reviewed in ref. 1). CSF was defined as an activity in mature oocytes that caused mitotic arrest when injected into dividing embryos. Fertilization causes a transient increase in cytoplasmic calcium concentration leading to CSF inactivation, APC activation, cyclin B destruction and mitotic exit. The APC activator Cdc20 is required for APC activation after fertilization. We show here that the APC(cdc20) inhibitor Emi1 (ref. 6) is necessary and sufficient to inhibit the APC and to prevent mitotic exit in CSF-arrested eggs. CSF extracts immunodepleted of Emi1 degrade cyclin B, and exit from mitosis prematurely in the absence of calcium. Addition of Emi1 to these Emi1-depleted extracts blocks premature inactivation of the CSF-arrested state. Emi1 is required to arrest unfertilized eggs at metaphase of meiosis II and seems to be the long-sought mediator of CSF activity.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号