首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
现状及发展   20篇
研究方法   2篇
综合类   10篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1988年   1篇
  1986年   1篇
  1979年   1篇
  1973年   3篇
  1972年   3篇
  1971年   4篇
  1970年   2篇
  1968年   4篇
  1966年   2篇
  1964年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
21.
22.
Scalable quantum computation and communication require error control to protect quantum information against unavoidable noise. Quantum error correction protects information stored in two-level quantum systems (qubits) by rectifying errors with operations conditioned on the measurement outcomes. Error-correction protocols have been implemented in nuclear magnetic resonance experiments, but the inherent limitations of this technique prevent its application to quantum information processing. Here we experimentally demonstrate quantum error correction using three beryllium atomic-ion qubits confined to a linear, multi-zone trap. An encoded one-qubit state is protected against spin-flip errors by means of a three-qubit quantum error-correcting code. A primary ion qubit is prepared in an initial state, which is then encoded into an entangled state of three physical qubits (the primary and two ancilla qubits). Errors are induced simultaneously in all qubits at various rates. The encoded state is decoded back to the primary ion one-qubit state, making error information available on the ancilla ions, which are separated from the primary ion and measured. Finally, the primary qubit state is corrected on the basis of the ancillae measurement outcome. We verify error correction by comparing the corrected final state to the uncorrected state and to the initial state. In principle, the approach enables a quantum state to be maintained by means of repeated error correction, an important step towards scalable fault-tolerant quantum computation using trapped ions.  相似文献   
23.
24.
A common polymorphism acts as an intragenic modifier of mutant p53 behaviour   总被引:24,自引:0,他引:24  
The p73 protein, a homologue of the tumour-suppressor protein p53, can activate p53-responsive promoters and induce apoptosis in p53-deficient cells. Here we report that some tumour-derived p53 mutants can bind to and inactivate p73. The binding of such mutants is influenced by whether TP53 (encoding p53) codon 72, by virtue of a common polymorphism in the human population, encodes Arg or Pro. The ability of mutant p53 to bind p73, neutralize p73-induced apoptosis and transform cells in cooperation with EJ-Ras was enhanced when codon 72 encoded Arg. We found that the Arg-containing allele was preferentially mutated and retained in squamous cell tumours arising in Arg/Pro germline heterozygotes. Thus, inactivation of p53 family members may contribute to the biological properties of a subset of p53 mutants, and a polymorphic residue within p53 affects mutant behaviour.  相似文献   
25.
26.
27.
28.
Chernobyl fallout in size-fractionated aerosol   总被引:1,自引:0,他引:1  
  相似文献   
29.
Entanglement is a necessary resource for quantum applications--entanglement established between quantum systems at different locations enables private communication and quantum teleportation, and facilitates quantum information processing. Distributed entanglement is established by preparing an entangled pair of quantum particles in one location, and transporting one member of the pair to another location. However, decoherence during transport reduces the quality (fidelity) of the entanglement. A protocol to achieve entanglement 'purification' has been proposed to improve the fidelity after transport. This protocol uses separate quantum operations at each location and classical communication to distil high-fidelity entangled pairs from lower-fidelity pairs. Proof-of-principle experiments distilling entangled photon pairs have been carried out. However, these experiments obtained distilled pairs with a low probability of success and required destruction of the entangled pairs, rendering them unavailable for further processing. Here we report efficient and non-destructive entanglement purification with atomic quantum bits. Two noisy entangled pairs were created and distilled into one higher-fidelity pair available for further use. Success probabilities were above 35 per cent. The many applications of entanglement purification make it one of the most important techniques in quantum information processing.  相似文献   
30.
Among the classes of highly entangled states of multiple quantum systems, the so-called 'Schr?dinger cat' states are particularly useful. Cat states are equal superpositions of two maximally different quantum states. They are a fundamental resource in fault-tolerant quantum computing and quantum communication, where they can enable protocols such as open-destination teleportation and secret sharing. They play a role in fundamental tests of quantum mechanics and enable improved signal-to-noise ratios in interferometry. Cat states are very sensitive to decoherence, and as a result their preparation is challenging and can serve as a demonstration of good quantum control. Here we report the creation of cat states of up to six atomic qubits. Each qubit's state space is defined by two hyperfine ground states of a beryllium ion; the cat state corresponds to an entangled equal superposition of all the atoms in one hyperfine state and all atoms in the other hyperfine state. In our experiments, the cat states are prepared in a three-step process, irrespective of the number of entangled atoms. Together with entangled states of a different class created in Innsbruck, this work represents the current state-of-the-art for large entangled states in any qubit system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号