首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1701篇
  免费   2篇
  国内免费   13篇
系统科学   75篇
丛书文集   3篇
教育与普及   7篇
理论与方法论   26篇
现状及发展   196篇
研究方法   274篇
综合类   1006篇
自然研究   129篇
  2021年   6篇
  2020年   13篇
  2019年   8篇
  2018年   9篇
  2017年   9篇
  2016年   13篇
  2015年   11篇
  2014年   18篇
  2013年   40篇
  2012年   116篇
  2011年   280篇
  2010年   41篇
  2009年   20篇
  2008年   131篇
  2007年   164篇
  2006年   139篇
  2005年   118篇
  2004年   124篇
  2003年   135篇
  2002年   156篇
  2001年   10篇
  2000年   14篇
  1999年   8篇
  1998年   8篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   8篇
  1992年   10篇
  1991年   6篇
  1990年   13篇
  1989年   8篇
  1988年   3篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1979年   3篇
  1978年   5篇
  1977年   2篇
  1975年   4篇
  1974年   3篇
  1973年   4篇
  1971年   5篇
  1970年   2篇
  1965年   1篇
  1958年   1篇
  1956年   1篇
排序方式: 共有1716条查询结果,搜索用时 15 毫秒
61.
Mammalian prions cause fatal neurodegenerative conditions including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. Prion infections are typically associated with remarkably prolonged but highly consistent incubation periods followed by a rapid clinical phase. The relationship between prion propagation, generation of neurotoxic species and clinical onset has remained obscure. Prion incubation periods in experimental animals are known to vary inversely with expression level of cellular prion protein. Here we demonstrate that prion propagation in brain proceeds via two distinct phases: a clinically silent exponential phase not rate-limited by prion protein concentration which rapidly reaches a maximal prion titre, followed by a distinct switch to a plateau phase. The latter determines time to clinical onset in a manner inversely proportional to prion protein concentration. These findings demonstrate an uncoupling of infectivity and toxicity. We suggest that prions themselves are not neurotoxic but catalyse the formation of such species from PrP(C). Production of neurotoxic species is triggered when prion propagation saturates, leading to a switch from autocatalytic production of infectivity (phase 1) to a toxic (phase 2) pathway.  相似文献   
62.
Many successful vaccines induce persistent antibody responses that can last a lifetime. The mechanisms by which they do so remain unclear, but emerging evidence indicates that they activate dendritic cells via Toll-like receptors (TLRs). For example, the yellow fever vaccine YF-17D, one of the most successful empiric vaccines ever developed, activates dendritic cells via multiple TLRs to stimulate proinflammatory cytokines. Triggering specific combinations of TLRs in dendritic cells can induce synergistic production of cytokines, which results in enhanced T-cell responses, but its impact on antibody responses remain unknown. Learning the critical parameters of innate immunity that program such antibody responses remains a major challenge in vaccinology. Here we demonstrate that immunization of mice with synthetic nanoparticles containing antigens plus ligands that signal through TLR4 and TLR7 induces synergistic increases in antigen-specific, neutralizing antibodies compared to immunization with nanoparticles containing antigens plus a single TLR ligand. Consistent with this there was enhanced persistence of germinal centres and of plasma-cell responses, which persisted in the lymph nodes for >1.5 years. Surprisingly, there was no enhancement of the early short-lived plasma-cell response relative to that observed with single TLR ligands. Molecular profiling of activated B cells, isolated 7 days after immunization, indicated that there was early programming towards B-cell memory. Antibody responses were dependent on direct triggering of both TLRs on B cells and dendritic cells, as well as on T-cell help. Immunization protected completely against lethal avian and swine influenza virus strains in mice, and induced robust immunity against pandemic H1N1 influenza in rhesus macaques.  相似文献   
63.
Aziz T  Stein J  Yogeshwar R 《Nature》2011,470(7335):457-459
  相似文献   
64.
ABSTRACT

The island of New Guinea has been identified as biologically megadiverse but many taxa are still poorly known. This is especially the case for many of the island’s snakes, which by their very nature can be difficult to collect and study. Here we examine the phylogenetic and phylogeographic structure of a poorly studied snake genus, Stegonotus, focusing on the species of New Guinea; until now, Stegonotus has never been examined using modern phylogenetic methods. Using molecular data from 49 individuals representing eight of the ten described species, and including all New Guinea taxa, we estimate a multilocus phylogeny and examine population structure to help identify undescribed taxa. We use morphological data from the corresponding museum vouchered specimens (where available) and also examine additional specimens for taxa not included in the molecular data set to determine morphological differences among putative taxa. We find molecular evidence for four new species of Stegonotus, both morphologically obvious and cryptic, and describe them herein. The recognition of these four species indicates that Stegonotus diversity has been previously underestimated and also suggests that there are likely additional undescribed taxa within the genus. These four taxa increase the number of described species by 40% and further confirm New Guinea as the centre of diversity for the genus.

www.zoobank.org/urn:lsid:zoobank.org:pub:9E21390E-3FD4-40EB-9442-31BC92A76B4F  相似文献   
65.
Atopic disease, including atopic dermatitis (eczema), allergy and asthma, has increased in frequency in recent decades and now affects approximately 20% of the population in the developed world. Twin and family studies have shown that predisposition to atopic disease is highly heritable. Although most genetic studies have focused on immunological mechanisms, a primary epithelial barrier defect has been anticipated. Filaggrin is a key protein that facilitates terminal differentiation of the epidermis and formation of the skin barrier. Here we show that two independent loss-of-function genetic variants (R510X and 2282del4) in the gene encoding filaggrin (FLG) are very strong predisposing factors for atopic dermatitis. These variants are carried by approximately 9% of people of European origin. These variants also show highly significant association with asthma occurring in the context of atopic dermatitis. This work establishes a key role for impaired skin barrier function in the development of atopic disease.  相似文献   
66.
67.
68.
The genetic basis of most conditions characterized by congenital contractures is largely unknown. Here we show that mutations in the embryonic myosin heavy chain (MYH3) gene cause Freeman-Sheldon syndrome (FSS), one of the most severe multiple congenital contracture (that is, arthrogryposis) syndromes, and nearly one-third of all cases of Sheldon-Hall syndrome (SHS), the most common distal arthrogryposis. FSS and SHS mutations affect different myosin residues, demonstrating that MYH3 genotype is predictive of phenotype. A structure-function analysis shows that nearly all of the MYH3 mutations are predicted to interfere with myosin's catalytic activity. These results add to the growing body of evidence showing that congenital contractures are a shared outcome of prenatal defects in myofiber force production. Elucidation of the genetic basis of these syndromes redefines congenital contractures as unique defects of the sarcomere and provides insights about what has heretofore been a poorly understood group of disorders.  相似文献   
69.
70.
In the fungal phylum Ascomycota, the ability to cause disease in plants and animals has been gained and lost repeatedly during phylogenesis. In monocotyledonous barley, loss-of-function mlo alleles result in effective immunity against the Ascomycete Blumeria graminis f. sp. hordei, the causal agent of powdery mildew disease. However, mlo-based disease resistance has been considered a barley-specific phenomenon to date. Here, we demonstrate a conserved requirement for MLO proteins in powdery mildew pathogenesis in the dicotyledonous plant species Arabidopsis thaliana. Epistasis analysis showed that mlo resistance in A. thaliana does not involve the signaling molecules ethylene, jasmonic acid or salicylic acid, but requires a syntaxin, glycosyl hydrolase and ABC transporter. These findings imply that a common host cell entry mechanism of powdery mildew fungi evolved once and at least 200 million years ago, suggesting that within the Erysiphales (powdery mildews) the ability to cause disease has been a stable trait throughout phylogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号