首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   2篇
  国内免费   1篇
系统科学   2篇
丛书文集   2篇
现状及发展   24篇
研究方法   13篇
综合类   72篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2014年   3篇
  2012年   10篇
  2011年   14篇
  2010年   4篇
  2009年   4篇
  2008年   7篇
  2007年   7篇
  2006年   7篇
  2005年   5篇
  2004年   6篇
  2003年   7篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有113条查询结果,搜索用时 31 毫秒
101.
Polo-like kinase-1 (PLK1) is an essential mitotic kinase regulating multiple aspects of the cell division process. Activation of PLK1 requires phosphorylation of a conserved threonine residue (Thr 210) in the T-loop of the PLK1 kinase domain, but the kinase responsible for this has not yet been affirmatively identified. Here we show that in human cells PLK1 activation occurs several hours before entry into mitosis, and requires aurora A (AURKA, also known as STK6)-dependent phosphorylation of Thr 210. We find that aurora A can directly phosphorylate PLK1 on Thr 210, and that activity of aurora A towards PLK1 is greatly enhanced by Bora (also known as C13orf34 and FLJ22624), a known cofactor for aurora A (ref. 7). We show that Bora/aurora-A-dependent phosphorylation is a prerequisite for PLK1 to promote mitotic entry after a checkpoint-dependent arrest. Importantly, expression of a PLK1-T210D phospho-mimicking mutant partially overcomes the requirement for aurora A in checkpoint recovery. Taken together, these data demonstrate that the initial activation of PLK1 is a primary function of aurora A.  相似文献   
102.
103.
Pastorino L  Sun A  Lu PJ  Zhou XZ  Balastik M  Finn G  Wulf G  Lim J  Li SH  Li X  Xia W  Nicholson LK  Lu KP 《Nature》2006,440(7083):528-534
Neuropathological hallmarks of Alzheimer's disease are neurofibrillary tangles composed of tau and neuritic plaques comprising amyloid-beta peptides (Abeta) derived from amyloid precursor protein (APP), but their exact relationship remains elusive. Phosphorylation of tau and APP on certain serine or threonine residues preceding proline affects tangle formation and Abeta production in vitro. Phosphorylated Ser/Thr-Pro motifs in peptides can exist in cis or trans conformations, the conversion of which is catalysed by the Pin1 prolyl isomerase. Pin1 has been proposed to regulate protein function by accelerating conformational changes, but such activity has never been visualized and the biological and pathological significance of Pin1 substrate conformations is unknown. Notably, Pin1 is downregulated and/or inhibited by oxidation in Alzheimer's disease neurons, Pin1 knockout causes tauopathy and neurodegeneration, and Pin1 promoter polymorphisms appear to associate with reduced Pin1 levels and increased risk for late-onset Alzheimer's disease. However, the role of Pin1 in APP processing and Abeta production is unknown. Here we show that Pin1 has profound effects on APP processing and Abeta production. We find that Pin1 binds to the phosphorylated Thr 668-Pro motif in APP and accelerates its isomerization by over 1,000-fold, regulating the APP intracellular domain between two conformations, as visualized by NMR. Whereas Pin1 overexpression reduces Abeta secretion from cell cultures, knockout of Pin1 increases its secretion. Pin1 knockout alone or in combination with overexpression of mutant APP in mice increases amyloidogenic APP processing and selectively elevates insoluble Abeta42 (a major toxic species) in brains in an age-dependent manner, with Abeta42 being prominently localized to multivesicular bodies of neurons, as shown in Alzheimer's disease before plaque pathology. Thus, Pin1-catalysed prolyl isomerization is a novel mechanism to regulate APP processing and Abeta production, and its deregulation may link both tangle and plaque pathologies. These findings provide new insight into the pathogenesis and treatment of Alzheimer's disease.  相似文献   
104.
105.
Elowitz M  Lim WA 《Nature》2010,468(7326):889-890
  相似文献   
106.
Lim MM  Wang Z  Olazábal DE  Ren X  Terwilliger EF  Young LJ 《Nature》2004,429(6993):754-757
The molecular mechanisms underlying the evolution of complex behaviour are poorly understood. The mammalian genus Microtus provides an excellent model for investigating the evolution of social behaviour. Prairie voles (Microtus ochrogaster) exhibit a monogamous social structure in nature, whereas closely related meadow voles (Microtus pennsylvanicus) are solitary and polygamous. In male prairie voles, both vasopressin and dopamine act in the ventral forebrain to regulate selective affiliation between adult mates, known as pair bond formation, as assessed by partner preference in the laboratory. The vasopressin V1a receptor (V1aR) is expressed at higher levels in the ventral forebrain of monogamous than in promiscuous vole species, whereas dopamine receptor distribution is relatively conserved between species. Here we substantially increase partner preference formation in the socially promiscuous meadow vole by using viral vector V1aR gene transfer into the ventral forebrain. We show that a change in the expression of a single gene in the larger context of pre-existing genetic and neural circuits can profoundly alter social behaviour, providing a potential molecular mechanism for the rapid evolution of complex social behaviour.  相似文献   
107.
The trivalent lanthanide ions are chemically similar to Ca(II) ions, making them useful Ca analogs for a multitude of applications. In addition, Ln(III) ions are efficient catalysts of hydrolysis due to their much stronger Lewis acidity relative to Ca(II) ions. Ln-binding peptides thus offer both the opportunity to study known Ca sites as well as to explore new biological functions with an entire family of spectroscopically rich and reactive ions. This review discusses Ln-binding peptides in three roles: (i) as models of Ca-protein structure and function, (ii) as spectroscopic tags for protein expression and characterization and (iii) as designed artificial endonucleases. The creation of hydrolytically active Ln peptides that can fold, bind, cleave and discriminate among substrates shows that the design of Ln enzymes can be accomplished, and they will serve as versatile biochemical tools to investigate protein folding, structure and nuclease function.Received 10 April 2004; received after revision 17 May 2004; accepted 28 May 2004  相似文献   
108.
109.
Familial hypercholanemia (FHC) is characterized by elevated serum bile acid concentrations, itching, and fat malabsorption. We show here that FHC in Amish individuals is associated with mutations in tight junction protein 2 (encoded by TJP2, also known as ZO-2) and bile acid Coenzyme A: amino acid N-acyltransferase (encoded by BAAT). The mutation of TJP2, which occurs in the first PDZ domain, reduces domain stability and ligand binding in vitro. We noted a morphological change in hepatic tight junctions. The mutation of BAAT, a bile acid-conjugating enzyme, abrogates enzyme activity; serum of individuals homozygous with respect to this mutation contains only unconjugated bile acids. Mutations in both TJP2 and BAAT may disrupt bile acid transport and circulation. Inheritance seems to be oligogenic, with genotype at BAAT modifying penetrance in individuals homozygous with respect to the mutation in TJP2.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号