首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   5篇
  国内免费   3篇
系统科学   8篇
丛书文集   1篇
教育与普及   2篇
理论与方法论   22篇
现状及发展   89篇
研究方法   77篇
综合类   268篇
自然研究   8篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   8篇
  2017年   7篇
  2016年   7篇
  2015年   6篇
  2014年   11篇
  2013年   21篇
  2012年   29篇
  2011年   46篇
  2010年   21篇
  2009年   6篇
  2008年   30篇
  2007年   35篇
  2006年   41篇
  2005年   30篇
  2004年   32篇
  2003年   19篇
  2002年   26篇
  2001年   12篇
  2000年   4篇
  1999年   8篇
  1998年   4篇
  1997年   6篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   4篇
  1990年   8篇
  1989年   7篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1972年   3篇
  1970年   1篇
  1969年   4篇
  1967年   2篇
  1961年   1篇
排序方式: 共有475条查询结果,搜索用时 15 毫秒
41.
Iron corrosion by novel anaerobic microorganisms   总被引:1,自引:0,他引:1  
Dinh HT  Kuever J  Mussmann M  Hassel AW  Stratmann M  Widdel F 《Nature》2004,427(6977):829-832
Corrosion of iron presents a serious economic problem. Whereas aerobic corrosion is a chemical process, anaerobic corrosion is frequently linked to the activity of sulphate-reducing bacteria (SRB). SRB are supposed to act upon iron primarily by produced hydrogen sulphide as a corrosive agent and by consumption of 'cathodic hydrogen' formed on iron in contact with water. Among SRB, Desulfovibrio species--with their capacity to consume hydrogen effectively--are conventionally regarded as the main culprits of anaerobic corrosion; however, the underlying mechanisms are complex and insufficiently understood. Here we describe novel marine, corrosive types of SRB obtained via an isolation approach with metallic iron as the only electron donor. In particular, a Desulfobacterium-like isolate reduced sulphate with metallic iron much faster than conventional hydrogen-scavenging Desulfovibrio species, suggesting that the novel surface-attached cell type obtained electrons from metallic iron in a more direct manner than via free hydrogen. Similarly, a newly isolated Methanobacterium-like archaeon produced methane with iron faster than do known hydrogen-using methanogens, again suggesting a more direct access to electrons from iron than via hydrogen consumption.  相似文献   
42.
Osteopoikilosis, Buschke-Ollendorff syndrome (BOS) and melorheostosis are disorders characterized by increased bone density. The occurrence of one or more of these phenotypes in the same individual or family suggests that these entities might be allelic. We collected data from three families in which affected individuals had osteopoikilosis with or without manifestations of BOS or melorheostosis. A genome-wide linkage analysis in these families, followed by the identification of a microdeletion in an unrelated individual with these diseases, allowed us to map the gene that is mutated in osteopoikilosis. All the affected individuals that we investigated were heterozygous with respect to a loss-of-function mutation in LEMD3 (also called MAN1), which encodes an inner nuclear membrane protein. A somatic mutation in the second allele of LEMD3 could not be identified in fibroblasts from affected skin of an individual with BOS and an individual with melorheostosis. XMAN1, the Xenopus laevis ortholog, antagonizes BMP signaling during embryogenesis. In this study, LEMD3 interacted with BMP and activin-TGFbeta receptor-activated Smads and antagonized both signaling pathways in human cells.  相似文献   
43.
The filamins are cytoplasmic proteins that regulate the structure and activity of the cytoskeleton by cross-linking actin into three-dimensional networks, linking the cell membrane to the cytoskeleton and serving as scaffolds on which intracellular signaling and protein trafficking pathways are organized (reviewed in refs. 1,2). We identified mutations in the gene encoding filamin B in four human skeletal disorders. We found homozygosity or compound heterozygosity with respect to stop-codon mutations in autosomal recessive spondylocarpotarsal syndrome (SCT, OMIM 272460) and missense mutations in individuals with autosomal dominant Larsen syndrome (OMIM 150250) and the perinatal lethal atelosteogenesis I and III phenotypes (AOI, OMIM 108720; AOIII, OMIM 108721). We found that filamin B is expressed in human growth plate chondrocytes and in the developing vertebral bodies in the mouse. These data indicate an unexpected role in vertebral segmentation, joint formation and endochondral ossification for this ubiquitously expressed cytoskeletal protein.  相似文献   
44.
The knockout mouse project   总被引:1,自引:0,他引:1  
Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain.  相似文献   
45.
Petersen PH  Zou K  Hwang JK  Jan YN  Zhong W 《Nature》2002,419(6910):929-934
Neurons in most regions of the mammalian nervous system are generated over an extended period of time during development. Maintaining sufficient numbers of progenitors over the course of neurogenesis is essential to ensure that neural cells are produced in correct numbers and diverse types. The underlying molecular mechanisms, like those governing stem-cell self-renewal in general, remain poorly understood. We report here that mouse numb and numblike (Nbl), two highly conserved homologues of Drosophila numb, play redundant but critical roles in maintaining neural progenitor cells during embryogenesis, by allowing their progenies to choose progenitor over neuronal fates. In Nbl mutant embryos also conditionally mutant for mouse numb in the nervous system, early neurons emerge in the expected spatial and temporal pattern, but at the expense of progenitor cells, leading to a nearly complete depletion of dividing cells shortly after the onset of neurogenesis. Our findings show that a shared molecular mechanism, with mouse Numb and Nbl as key components, governs the self-renewal of all neural progenitor cells, regardless of their lineage or regional identities.  相似文献   
46.
47.
Immunology: a block at the toll gate   总被引:4,自引:0,他引:4  
Mak TW  Yeh WC 《Nature》2002,418(6900):835-836
  相似文献   
48.
49.
Revealing modular organization in the yeast transcriptional network   总被引:21,自引:0,他引:21  
  相似文献   
50.
Mutations in BRCA1 and BRCA2 confer a high risk of breast and ovarian cancer, but account for only a small fraction of breast cancer susceptibility. To find additional genes conferring susceptibility to breast cancer, we analyzed CHEK2 (also known as CHK2), which encodes a cell-cycle checkpoint kinase that is implicated in DNA repair processes involving BRCA1 and p53 (refs 3,4,5). We show that CHEK2(*)1100delC, a truncating variant that abrogates the kinase activity, has a frequency of 1.1% in healthy individuals. However, this variant is present in 5.1% of individuals with breast cancer from 718 families that do not carry mutations in BRCA1 or BRCA2 (P = 0.00000003), including 13.5% of individuals from families with male breast cancer (P = 0.00015). We estimate that the CHEK2(*)1100delC variant results in an approximately twofold increase of breast cancer risk in women and a tenfold increase of risk in men. By contrast, the variant confers no increased cancer risk in carriers of BRCA1 or BRCA2 mutations. This suggests that the biological mechanisms underlying the elevated risk of breast cancer in CHEK2 mutation carriers are already subverted in carriers of BRCA1 or BRCA2 mutations, which is consistent with participation of the encoded proteins in the same pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号