首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   0篇
系统科学   38篇
教育与普及   3篇
现状及发展   53篇
研究方法   41篇
综合类   178篇
自然研究   7篇
  2017年   2篇
  2016年   4篇
  2012年   10篇
  2011年   22篇
  2010年   6篇
  2009年   3篇
  2008年   13篇
  2007年   13篇
  2006年   17篇
  2005年   6篇
  2004年   11篇
  2003年   12篇
  2002年   17篇
  2001年   19篇
  2000年   13篇
  1999年   6篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   7篇
  1993年   11篇
  1992年   8篇
  1991年   6篇
  1990年   7篇
  1989年   5篇
  1988年   6篇
  1987年   11篇
  1986年   5篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1972年   2篇
  1971年   9篇
  1970年   12篇
  1969年   6篇
  1968年   5篇
  1967年   6篇
  1966年   5篇
  1965年   1篇
  1962年   1篇
  1954年   1篇
排序方式: 共有320条查询结果,搜索用时 31 毫秒
261.
Pulmonary function measures reflect respiratory health and are used in the diagnosis of chronic obstructive pulmonary disease. We tested genome-wide association with forced expiratory volume in 1 second and the ratio of forced expiratory volume in 1 second to forced vital capacity in 48,201 individuals of European ancestry with follow up of the top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P < 5 × 10(-8)) with pulmonary function in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (also known as EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1 and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function.  相似文献   
262.
The high-affinity Na+-dependent carnitine transporter OCTN2 (SLC22A5) has a high renal expression and reabsorbs most filtered carnitine. To gain more insight into substrate specificity of OCTN2, we overexpressed hOCTN2 in L6 cells and characterized the structural requirements of substances acting as human OCTN2 (hOCTN2) inhibitors. A 1905-bp fragment containing the hOCTN2 complete coding sequence was introduced into the pWpiresGFP vector, and L6 cells were stably transduced using a lentiviral system. The transduced L6 cells revealed increased expression of hOCTN2 on the mRNA, protein and functional levels. Structural requirements for hOCTN2 inhibition were predicted in silico and investigated in vitro. Essential structural requirements for OCTN2 inhibition include a constantly positively charged nitrogen atom and a carboxyl, nitrile or ester group connected by a 2-4-atom linker. Our cell system is suitable for studying in vitro interactions with OCTN2, which can subsequently be investigated in vivo.  相似文献   
263.
Despite the common occurrence of forkhead associated (FHA) phosphopeptide-binding domains and really interesting new gene (RING) E3 ubiquitin ligase domains, gene products containing both an N-terminal FHA domain and C-terminal RING domain constitute a highly distinctive intersection. Characterized FHA-RING ligases include the two vertebrate proteins, Checkpoint with FHA and RING (Chfr) and RING finger 8 (Rnf8), as well as three fungal proteins, Defective in mitosis (Dma1), Chf1 and Chf2. These FHA-RING ligases play roles in negative regulation of the cell division cycle, apparently by coupling protein phosphorylation events to specific ubiquitylation of target proteins. Here, the available data on upstream and downstream regulation of and by FHA-RING ligases are reviewed. Received 24 April 2008; received after revision 18 June 2008; accepted 20 June 2008  相似文献   
264.
Genetic factors have been implicated in stroke risk, but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) for ischemic stroke and its subtypes in 3,548 affected individuals and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 affected individuals and 6,281 controls. We replicated previous associations for cardioembolic stroke near PITX2 and ZFHX3 and for large vessel stroke at a 9p21 locus. We identified a new association for large vessel stroke within HDAC9 (encoding histone deacetylase 9) on chromosome 7p21.1 (including further replication in an additional 735 affected individuals and 28,583 controls) (rs11984041; combined P = 1.87 × 10(-11); odds ratio (OR) = 1.42, 95% confidence interval (CI) = 1.28-1.57). All four loci exhibited evidence for heterogeneity of effect across the stroke subtypes, with some and possibly all affecting risk for only one subtype. This suggests distinct genetic architectures for different stroke subtypes.  相似文献   
265.
To identify risk variants for multiple myeloma, we conducted a genome-wide association study of 1,675 individuals with multiple myeloma and 5,903 control subjects. We identified risk loci for multiple myeloma at 3p22.1 (rs1052501 in ULK4; odds ratio (OR) = 1.32; P = 7.47 × 10(-9)) and 7p15.3 (rs4487645, OR = 1.38; P = 3.33 × 10(-15)). In addition, we observed a promising association at 2p23.3 (rs6746082, OR = 1.29; P = 1.22 × 10(-7)). Our study identifies new genomic regions associated with multiple myeloma risk that may lead to new etiological insights.  相似文献   
266.
We have identified a recurrent de novo pericentromeric deletion in 16p11.2-p12.2 in four individuals with developmental disabilities by microarray-based comparative genomic hybridization analysis. The identification of common clinical features in these four individuals along with the characterization of complex segmental duplications flanking the deletion regions suggests that nonallelic homologous recombination mediated these rearrangements and that deletions in 16p11.2-p12.2 constitute a previously undescribed syndrome.  相似文献   
267.
We determined the complete genome sequence of Clostridium difficile strain 630, a virulent and multidrug-resistant strain. Our analysis indicates that a large proportion (11%) of the genome consists of mobile genetic elements, mainly in the form of conjugative transposons. These mobile elements are putatively responsible for the acquisition by C. difficile of an extensive array of genes involved in antimicrobial resistance, virulence, host interaction and the production of surface structures. The metabolic capabilities encoded in the genome show multiple adaptations for survival and growth within the gut environment. The extreme genome variability was confirmed by whole-genome microarray analysis; it may reflect the organism's niche in the gut and should provide information on the evolution of virulence in this organism.  相似文献   
268.
Activated protein C (APC) is a natural anticoagulant with strong anti-inflammatory, anti-apoptotic, and barrier stabilizing properties. These cytoprotective properties of APC are thought to be exerted through its pathway involving the binding of APC to endothelial protein C receptor and cleavage of protease-activated receptors. In this study, we found that APC enhanced endothelial barrier integrity via a novel pathway, by binding directly to and activating Tie2, a transmembrane endothelial tyrosine kinase receptor. Binding assays demonstrated that APC competed with the only known ligands of Tie2, the angiopoietins (Angs). APC bound directly to Tie2 (Kd ~3 nM), with markedly stronger binding affinity than Ang2. After binding, APC rapidly activated Tie2 to enhance endothelial barrier function as shown by Evan’s blue dye transfer across confluent cell monolayers and in vivo studies. Blocking Tie2 restricted endothelial barrier integrity. This study highlights a novel mechanism by which APC binds directly to Tie2 to enhance endothelial barrier integrity, which helps to explain APC’s protective effects in vascular leakage-related pathologies.  相似文献   
269.
Amyotrophic lateral sclerosis (ALS) is a paralytic and usually fatal disorder caused by motor-neuron degeneration in the brain and spinal cord. Most cases of ALS are sporadic but about 5-10% are familial. Mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein (TARDBP, also known as TDP43) and fused in sarcoma (FUS, also known as translocated in liposarcoma (TLS)) account for approximately 30% of classic familial ALS. Mutations in several other genes have also been reported as rare causes of ALS or ALS-like syndromes. The causes of the remaining cases of familial ALS and of the vast majority of sporadic ALS are unknown. Despite extensive studies of previously identified ALS-causing genes, the pathogenic mechanism underlying motor-neuron degeneration in ALS remains largely obscure. Dementia, usually of the frontotemporal lobar type, may occur in some ALS cases. It is unclear whether ALS and dementia share common aetiology and pathogenesis in ALS/dementia. Here we show that mutations in UBQLN2, which encodes the ubiquitin-like protein ubiquilin?2, cause dominantly inherited, chromosome-X-linked ALS and ALS/dementia. We describe novel ubiquilin?2 pathology in the spinal cords of ALS cases and in the brains of ALS/dementia cases with or without UBQLN2 mutations. Ubiquilin?2 is a member of the ubiquilin family, which regulates the degradation of ubiquitinated proteins. Functional analysis showed that mutations in UBQLN2 lead to an impairment of protein degradation. Therefore, our findings link abnormalities in ubiquilin?2 to defects in the protein degradation pathway, abnormal protein aggregation and neurodegeneration, indicating a common pathogenic mechanism that can be exploited for therapeutic intervention.  相似文献   
270.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号