首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45944篇
  免费   96篇
  国内免费   117篇
系统科学   354篇
丛书文集   1082篇
教育与普及   118篇
理论与方法论   244篇
现状及发展   20269篇
研究方法   1711篇
综合类   21685篇
自然研究   694篇
  2013年   285篇
  2012年   574篇
  2011年   1300篇
  2010年   247篇
  2008年   745篇
  2007年   778篇
  2006年   838篇
  2005年   826篇
  2004年   774篇
  2003年   829篇
  2002年   753篇
  2001年   1355篇
  2000年   1236篇
  1999年   803篇
  1992年   797篇
  1991年   676篇
  1990年   715篇
  1989年   667篇
  1988年   692篇
  1987年   712篇
  1986年   689篇
  1985年   855篇
  1984年   699篇
  1983年   589篇
  1982年   493篇
  1981年   511篇
  1980年   665篇
  1979年   1421篇
  1978年   1213篇
  1977年   1204篇
  1976年   875篇
  1975年   994篇
  1974年   1370篇
  1973年   1203篇
  1972年   1221篇
  1971年   1477篇
  1970年   1942篇
  1969年   1502篇
  1968年   1367篇
  1967年   1447篇
  1966年   1254篇
  1965年   907篇
  1964年   243篇
  1959年   571篇
  1958年   850篇
  1957年   668篇
  1956年   572篇
  1955年   503篇
  1954年   561篇
  1948年   334篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
851.
Myostatin, a member of the transforming growth factor-β superfamily, is a potent negative regulator of skeletal muscle growth and is conserved in many species, from rodents to humans. Myostatin inactivation can induce skeletal muscle hypertrophy, while its overexpression or systemic administration causes muscle atrophy. As it represents a potential target for stimulating muscle growth and/or preventing muscle wasting, myostatin regulation and functions in the control of muscle mass have been extensively studied. A wealth of data strongly suggests that alterations in skeletal muscle mass are associated with dysregulation in myostatin expression. Moreover, myostatin plays a central role in integrating/mediating anabolic and catabolic responses. Myostatin negatively regulates the activity of the Akt pathway, which promotes protein synthesis, and increases the activity of the ubiquitin–proteasome system to induce atrophy. Several new studies have brought new information on how myostatin may affect both ribosomal biogenesis and translation efficiency of specific mRNA subclasses. In addition, although myostatin has been identified as a modulator of the major catabolic pathways, including the ubiquitin–proteasome and the autophagy–lysosome systems, the underlying mechanisms are only partially understood. The goal of this review is to highlight outstanding questions about myostatin-mediated regulation of the anabolic and catabolic signaling pathways in skeletal muscle. Particular emphasis has been placed on (1) the cross-regulation between myostatin, the growth-promoting pathways and the proteolytic systems; (2) how myostatin inhibition leads to muscle hypertrophy; and (3) the regulation of translation by myostatin.  相似文献   
852.
853.
The aggregation and deposition of the amyloid-β peptide (Aβ) in the brain has been linked with neuronal death, which progresses in the diagnostic and pathological signs of Alzheimer’s disease (AD). The transition of an unstructured monomeric peptide into self-assembled and more structured aggregates is the crucial conversion from what appears to be a harmless polypeptide into a malignant form that causes synaptotoxicity and neuronal cell death. Despite efforts to identify the toxic form of Aβ, the development of effective treatments for AD is still limited by the highly transient and dynamic nature of interconverting forms of Aβ. The variability within the in vivo “pool” of different Aβ peptides is another complicating factor. Here we review the dynamical interplay between various components that influence the heterogeneous Aβ system, from intramolecular Aβ flexibility to intermolecular dynamics between various Aβ alloforms and external factors. The complex dynamics of Aβ contributes to the causative role of Aβ in the pathogenesis of AD.  相似文献   
854.
The fibrin(ogen) receptor, integrin α(IIb)β(3), has a well-established role in platelet spreading, aggregation and clot retraction. How α(IIb)β(3) contributes to platelet-dependent coagulation is less well resolved. Here, we demonstrate that the potent suppressing effect of clinically used α(IIb)β(3) blockers on tissue factor-induced thrombin generation is linked to diminished platelet Ca(2+) responses and phosphatidylserine (PS) exposure. The same blockers suppress these responses in platelets stimulated with collagen and thrombin receptor agonists, whereas added fibrinogen potentiates these responses. In platelets spreading on fibrinogen, outside-in α(IIb)β(3) signaling similarly enhances thrombin-induced Ca(2+) rises and PS exposure. These responses are reduced in α(IIb)β(3)-deficient platelets from patients with Glanzmann's thrombasthenia. Furthermore, the contribution of α(IIb)β(3) to tissue factor-induced platelet Ca(2+) rises, PS exposure and thrombin generation in plasma are fully dependent on Syk kinase activity. Tyrosine phosphorylation analysis confirms a key role of Syk activation, which is largely but not exclusively dependent on α(IIb)β(3) activation. It is concluded that the majority of tissue factor-induced procoagulant activity of platelets relies on Syk activation and ensuing Ca(2+) signal generation, and furthermore that a considerable part of Syk activation relies on α(IIb)β(3) signaling. These results hence point to a novel role of Syk in integrin-dependent thrombin generation.  相似文献   
855.
Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis.  相似文献   
856.
In this paper I identify a tension between the two sets of works by Kuhn regarding the genesis of the "new historiography of science". In the first, it could be said that the change from the traditional to the new historiography is strictly endogenous (referring to internal causes or reasons). In the second, the change is predominantly exogenous. To address this question, I draw on a text that is considered to be less important among Kuhn's works, but which, as shall be argued, allows some contact between Kuhn's two approaches via Koyré. I seek to point out and differentiate the roles of Koyré and Kuhn--from Kuhn's point of view--in the development of the historiography of science and, as a complement, present some reflections regarding the justification of the new historiography.  相似文献   
857.
Melanopsin-based phototransduction is involved in non-image forming light responses including circadian entrainment, pupil constriction, suppression of pineal melatonin synthesis, and direct photic regulation of sleep in vertebrates. Given that the functions of melanopsin involve the measurement and summation of total environmental luminance, there would appear to be no need for the rapid deactivation typical of other G-protein coupled receptors. In this study, however, we demonstrate that heterologously expressed mouse melanopsin is phosphorylated in a light-dependent manner, and that this phosphorylation is involved in regulating the rate of G-protein activation and the lifetime of melanopsin’s active state. Furthermore, we provide evidence for light-dependent phosphorylation of melanopsin in the mouse retina using an in situ proximity ligation assay. Finally, we demonstrate that melanopsin preferentially interacts with the GRK2/3 family of G-protein coupled receptor kinases through co-immunoprecipitation assays. Based on the complement of G-protein receptor kinases present in the melanopsin-expressing retinal ganglion cells, GRK2 emerges as the best candidate for melanopsin’s cognate GRK.  相似文献   
858.
Age is an important risk for autoimmunity, and many autoimmune diseases preferentially occur in the second half of adulthood when immune competence has declined and thymic T cell generation has ceased. Many tolerance checkpoints have to fail for an autoimmune disease to develop, and several of those are susceptible to the immune aging process. Homeostatic T cell proliferation which is mainly responsible for T cell replenishment during adulthood can lead to the selection of T cells with increased affinity to self- or neoantigens and enhanced growth and survival properties. These cells can acquire a memory-like phenotype, in particular under lymphopenic conditions. Accumulation of end-differentiated effector T cells, either specific for self-antigen or for latent viruses, have a low activation threshold due to the expression of signaling and regulatory molecules and generate an inflammatory environment with their ability to be cytotoxic and to produce excessive amounts of cytokines and thereby inducing or amplifying autoimmune responses.  相似文献   
859.
Over the last two decades the molecular and cellular mechanisms underlying T cell activation, expansion, differentiation, and memory formation have been intensively investigated. These studies revealed that the generation of memory T cells is critically impacted by a number of factors, including the magnitude of the inflammatory response and cytokine production, the type of dendritic cell [DC] that presents the pathogen derived antigen, their maturation status, and the concomitant provision of costimulation. Nevertheless, the primary stimulus leading to T cell activation is generated through the T cell receptor [TCR] following its engagement with a peptide MHC ligand [pMHC]. The purpose of this review is to highlight classical and recent findings on how antigen recognition, the degree of TCR stimulation, and intracellular signal transduction pathways impact the formation of effector and memory T cells.  相似文献   
860.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号