首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45944篇
  免费   96篇
  国内免费   117篇
系统科学   354篇
丛书文集   1082篇
教育与普及   118篇
理论与方法论   244篇
现状及发展   20269篇
研究方法   1711篇
综合类   21685篇
自然研究   694篇
  2013年   285篇
  2012年   574篇
  2011年   1300篇
  2010年   247篇
  2008年   745篇
  2007年   778篇
  2006年   838篇
  2005年   826篇
  2004年   774篇
  2003年   829篇
  2002年   753篇
  2001年   1355篇
  2000年   1236篇
  1999年   803篇
  1992年   797篇
  1991年   676篇
  1990年   715篇
  1989年   667篇
  1988年   692篇
  1987年   712篇
  1986年   689篇
  1985年   855篇
  1984年   699篇
  1983年   589篇
  1982年   493篇
  1981年   511篇
  1980年   665篇
  1979年   1421篇
  1978年   1213篇
  1977年   1204篇
  1976年   875篇
  1975年   994篇
  1974年   1370篇
  1973年   1203篇
  1972年   1221篇
  1971年   1477篇
  1970年   1942篇
  1969年   1502篇
  1968年   1367篇
  1967年   1447篇
  1966年   1254篇
  1965年   907篇
  1964年   243篇
  1959年   571篇
  1958年   850篇
  1957年   668篇
  1956年   572篇
  1955年   503篇
  1954年   561篇
  1948年   334篇
排序方式: 共有10000条查询结果,搜索用时 838 毫秒
701.
Indenone KR-62776 acts as an agonist of PPARγ without inducing obesity in animal models and cells. X-ray crystallography reveals that the indenone occupies the binding pocket in a different manner than rosiglitazone. 2-Dimensional gel-electrophoresis showed that the expression of 42 proteins was altered more than 2.0-fold between KR-62776- or rosiglitazone-treated adipocyte cells and control cells. Rosiglitazone down-regulated the expression of ERK1/2 and suppressed the phosphorylation of ERK1/2 in these cells. However, the expression of ERK1/2 was up-regulated in KR-62776-treated cells. Phosphorylated ERK1/2, activated by indenone, affects the localization of PPARγ, suggesting a mechanism for indenone-inhibition of adipogenesis in 3T3-L1 preadipocyte cells. The preadipocyte cells are treated with ERK1/2 inhibitor PD98059, a large amount of the cells are converted to adipocyte cells. These results support the conclusion that the localization of PPARγ is one of the key factors explaining the biological responses of the ligands. Received 04 March 2009; received after revision 13 March 2009; accepted 17 March 2009  相似文献   
702.
Functions and pathologies of BiP and its interaction partners   总被引:1,自引:1,他引:0  
The endoplasmic reticulum (ER) is involved in a variety of essential and interconnected processes in human cells, including protein biogenesis, signal transduction, and calcium homeostasis. The central player in all these processes is the ER-lumenal polypeptide chain binding protein BiP that acts as a molecular chaperone. BiP belongs to the heat shock protein 70 (Hsp70) family and crucially depends on a number of interaction partners, including co-chaperones, nucleotide exchange factors, and signaling molecules. In the course of the last five years, several diseases have been linked to BiP and its interaction partners, such as a group of infectious diseases that are caused by Shigella toxin producing E. coli. Furthermore, the inherited diseases Marinesco-Sj?gren syndrome, autosomal dominant polycystic liver disease, Wolcott-Rallison syndrome, and several cancer types can be considered BiP-related diseases. This review summarizes the physiological and pathophysiological characteristics of BiP and its interaction partners. Received 20 November 2008; received after revision 09 December 2008; accepted 12 December 2008  相似文献   
703.
Large conductance, Ca2+-activated potassium (BK) channels are widely expressed throughout the animal kingdom and play important roles in many physiological processes, such as muscle contraction, neural transmission and hearing. These physiological roles derive from the ability of BK channels to be synergistically activated by membrane voltage, intracellular Ca2+ and other ligands. Similar to voltage-gated K+ channels, BK channels possess a pore-gate domain (S5–S6 transmembrane segments) and a voltage-sensor domain (S1–S4). In addition, BK channels contain a large cytoplasmic C-terminal domain that serves as the primary ligand sensor. The voltage sensor and the ligand sensor allosterically control K+ flux through the pore-gate domain in response to various stimuli, thereby linking cellular metabolism and membrane excitability. This review summarizes the current understanding of these structural domains and their mutual interactions in voltage-, Ca2+ - and Mg2+ -dependent activation of the channel. Received 25 September 2008; received after revision 23 October 2008; accepted 24 October 2008  相似文献   
704.
705.
Studies on identification, derivation and characterization of human stem cells in the last decade have led to high expectations in the field of regenerative medicine. Although it is clear that for successful stem cell-based therapy several obstacles have to be overcome, other opportunities lay ahead for the use of human stem cells. A more immediate application would be the development of human models for cell-type specific differentiation and disease in vitro. Cardiomyocytes can be generated from stem cells, which have been shown to follow similar molecular events of cardiac development in vivo. Furthermore, several monogenic cardiovascular diseases have been described, for which in vitro models in stem cells could be generated. Here, we will discuss the potential of human embryonic stem cells, cardiac stem cells and the recently described induced pluripotent stem cells as models for cardiac differentiation and disease. Received 07 August 2008; received after revision 26 September 2008; accepted 03 October 2008  相似文献   
706.
Cytoplasmic translation is under sophisticated control but how cells adapt its rate to constitutive loss of mitochondrial oxidative phosphorylation is unknown. Here we show that translation is repressed in cells with the pathogenic A3243G mtDNA mutation or in mtDNA-less ρ0 cells by at least two distinct pathways, one transiently targeting elongation factor eEF-2 and the other initiation factor eIF-2α constitutively. Under conditions of exponential cell growth and mammalian target of rapamycin (mTOR) activation, eEF-2 becomes transiently phosphorylated by an AMP-activated protein kinase (AMPK)-dependent pathway, especially high in mutant cells. Independent of AMPK and mTOR, eIF-2α is constitutively phosphorylated in mutant cells, likely a signature of endoplasmic reticulum (ER)-stress response induced by the loss of oxidative phosphorylation. While the AMPK/eEF-2K/eEF-2 pathway appears to function in adaptation to physiological fluctuations in ATP levels in the mutant cells, the ER stress signified by constitutive protein synthesis inhibition through eIF-2α-mediated repression of translation initiation may have pathobiochemical consequences. Received 29 October 2008; received after revision 11 December 2008; accepted 16 December 2008  相似文献   
707.
Methylation of lysine residues of histones is associated with functionally distinct regions of chromatin, and, therefore, is an important epigenetic mark. Over the past few years, several enzymes that catalyze this covalent modification on different lysine residues of histones have been discovered. Intriguingly, histone lysine methylation has also been shown to be cross-regulated by histone ubiquitination or the enzymes that catalyze this modification. These covalent modifications and their cross-talks play important roles in regulation of gene expression, heterochromatin formation, genome stability, and cancer. Thus, there has been a very rapid progress within past several years towards elucidating the molecular basis of histone lysine methylation and ubiquitination, and their aberrations in human diseases. Here, we discuss these covalent modifications with their cross-regulation and roles in controlling gene expression and stability. Received 24 September 2008; received after revision 21 November 2008; accepted 28 November 2008  相似文献   
708.
Little is known about the fate of machinery proteins of the protein quality control and endoplasmic reticulum(ER)-associated degradation (ERAD). We investigated the degradation of the ERAD component EDEM1, which directs overexpressed misfolded glycoproteins to degradation. Endogenous EDEM1 was studied since EDEM1 overexpression not only resulted in inappropriate occurrence throughout the ER but also caused cytotoxic effects. Proteasome inhibitors had no effect on the clearance of endogenous EDEM1 in non-starved cells. However, EDEM1 could be detected by immunocytochemistry in autophagosomes and biochemically in LC3 immuno-purified autophagosomes. Furthermore, influencing the lysosome-autophagy pathway by vinblastine or pepstatin A/E64d and inhibiting autophagosome formation by 3-methyladenine or ATGs short interfering RNA knockdown stabilized EDEM1. Autophagic degradation involved removal of cytosolic Triton X-100-insoluble deglycosylated EDEM1, but not of EDEM1-containing ER cisternae. Our studies demonstrate that endogenous EDEM1 in cells not stressed by the expression of a transgenic misfolded protein reaches the cytosol and is degraded by basal autophagy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 15 January 2009; received after revision 16 February 2009; accepted 17 February 2009 V. Le Fourn, K. Gaplovska-Kysela: These authors equally contributed to this work.  相似文献   
709.
The elucidation of assembly pathways of multi-subunit membrane proteins is of growing interest in structural biology. In this study, we provide an analysis of the assembly of the asymmetrically oriented PsaC subunit on the pseudo C2-symmetric Photosystem I core. Based on a comparison of the differences in the NMR solution structure of unbound PsaC with that of the X-ray crystal structure of bound PsaC, and on a detailed analysis of the PsaC binding site surrounding the FX iron-sulfur cluster, two models can be envisioned for what are likely the last steps in the assembly of Photosystem I. Here, we dissect both models and attempt to address heretofore unrecognized issues by proposing a mechanism that includes a thermodynamic perspective. Experimental strategies to verify the models are proposed. In closing, the evolutionary aspects of the assembly process will be considered, with special reference to the structural arrangement of the PsaC binding surface. Received 22 October 2008; received after revision 17 November 2008; accepted 05 December 2008  相似文献   
710.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号