首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41493篇
  免费   78篇
  国内免费   105篇
系统科学   210篇
丛书文集   800篇
教育与普及   101篇
理论与方法论   245篇
现状及发展   17483篇
研究方法   1657篇
综合类   20556篇
自然研究   624篇
  2013年   317篇
  2012年   557篇
  2011年   1214篇
  2010年   245篇
  2008年   697篇
  2007年   759篇
  2006年   794篇
  2005年   774篇
  2004年   710篇
  2003年   742篇
  2002年   747篇
  2001年   1348篇
  2000年   1255篇
  1999年   792篇
  1992年   744篇
  1991年   613篇
  1990年   625篇
  1989年   659篇
  1988年   638篇
  1987年   648篇
  1986年   661篇
  1985年   766篇
  1984年   648篇
  1983年   543篇
  1982年   473篇
  1981年   455篇
  1980年   581篇
  1979年   1282篇
  1978年   1108篇
  1977年   1061篇
  1976年   777篇
  1975年   857篇
  1974年   1246篇
  1973年   1043篇
  1972年   1075篇
  1971年   1345篇
  1970年   1733篇
  1969年   1273篇
  1968年   1255篇
  1967年   1237篇
  1966年   1109篇
  1965年   787篇
  1964年   180篇
  1959年   450篇
  1958年   693篇
  1957年   554篇
  1956年   449篇
  1955年   386篇
  1954年   445篇
  1948年   260篇
排序方式: 共有10000条查询结果,搜索用时 515 毫秒
871.
Colleen McBride and colleagues argue that progress on a multifaceted research agenda is necessary to reap the full benefits and avoid the potential pitfalls of the emerging area of personalized genomics. They also outline one element of this agenda, the Multiplex Initiative, which has been underway since 2006.  相似文献   
872.
Epithelial organs, including the lung, are known to possess regenerative abilities through activation of endogenous stem cell populations, but the molecular pathways regulating stem cell expansion and regeneration are not well understood. Here we show that Gata6 regulates the temporal appearance and number of bronchioalveolar stem cells (BASCs) in the lung, its absence in Gata6-null lung epithelium leading to the precocious appearance of BASCs and concurrent loss in epithelial differentiation. This expansion of BASCs was the result of a pronounced increase in canonical Wnt signaling in lung epithelium upon loss of Gata6. Expression of the noncanonical Wnt receptor Fzd2 was downregulated in Gata6 mutants and increased Fzd2 or decreased beta-catenin expression rescued, in part, the lung epithelial defects in Gata6 mutants. During lung epithelial regeneration, canonical Wnt signaling was activated in the niche containing BASCs and forced activation of Wnt signaling led to a large increase in BASC numbers. Moreover, Gata6 was required for proper lung epithelial regeneration, and postnatal loss of Gata6 led to increased BASC expansion and decreased differentiation. Together, these data demonstrate that Gata6-regulated Wnt signaling controls the balance between progenitor expansion and epithelial differentiation required for both lung development and regeneration.  相似文献   
873.
Allele-specific DNA methylation (ASM) is a hallmark of imprinted genes, but ASM in the larger nonimprinted fraction of the genome is less well characterized. Using methylation-sensitive SNP analysis (MSNP), we surveyed the human genome at 50K and 250K resolution, identifying ASM as recurrent genotype call conversions from heterozygosity to homozygosity when genomic DNAs were predigested with the methylation-sensitive restriction enzyme HpaII. Using independent assays, we confirmed ASM at 16 SNP-tagged loci distributed across various chromosomes. At 12 of these loci (75%), the ASM tracked strongly with the sequence of adjacent SNPs. Further analysis showed allele-specific mRNA expression at two loci from this methylation-based screen--the vanin and CYP2A6-CYP2A7 gene clusters--both implicated in traits of medical importance. This recurrent phenomenon of sequence-dependent ASM has practical implications for mapping and interpreting associations of noncoding SNPs and haplotypes with human phenotypes.  相似文献   
874.
875.
It has been four years since the original publication of the draft sequence of the rat genome. Five groups are now working together to assemble, annotate and release an updated version of the rat genome. As the prevailing model for physiology, complex disease and pharmacological studies, there is an acute need for the rat's genomic resources to keep pace with the rat's prominence in the laboratory. In this commentary, we describe the current status of the rat genome sequence and the plans for its impending 'upgrade'. We then cover the key online resources providing access to the rat genome, including the new SNP views at Ensembl, the RefSeq and Genes databases at the US National Center for Biotechnology Information, Genome Browser at the University of California Santa Cruz and the disease portals for cardiovascular disease and obesity at the Rat Genome Database.  相似文献   
876.
FMRP与TDG蛋白的相互作用   总被引:3,自引:0,他引:3  
脆性X智力低下蛋白FMRP表达的缺乏可以导致最常见的遗传性智力低下疾病—脆性X综合征。用酵母双杂交体系筛选与FMRP相互作用的蛋白质,以期通过相互作用的蛋白质研究与FMRP相关的生化途径。从小鼠胚胎cDNA文库中得到一个与FMRP特异相互作用蛋白的cDNA(Genbank号af102857)。该cDNA编码的蛋白与人的G/T错配DNA胸腺嘧啶糖苷酶(hTDG)高度同源通过多种FMRP造反剪接异构体  相似文献   
877.
Evolution of neoplastic cell lineages in Barrett oesophagus.   总被引:20,自引:0,他引:20  
It has been hypothesized that neoplastic progression develops as a consequence of an acquired genetic instability and the subsequent evolution of clonal populations with accumulated genetic errors. Accordingly, human cancers and some premalignant lesions contain multiple genetic abnormalities not present in the normal tissues from which the neoplasms arose. Barrett oesophagus (BE) is a premalignant condition which predisposes to oesophageal adenocarcinoma (EA) that can be biopsied prospectively over time because endoscopic surveillance is recommended for early detection of cancer. In addition, oesophagectomy specimens frequently contain the premalignant epithelium from which the cancer arose. Neoplastic progression in BE is associated with alterations in TP53 (also known as p53) and CDKN2A (also known as p16) and non-random losses of heterozygosity (LOH). Aneuploid or increased 4N populations occur in more than 90-95% of EAs, arise in premalignant epithelium and predict progression. We have previously shown in small numbers of patients that disruption of TP53 and CDKN2A typically occurs before aneuploidy and cancer. Here, we determine the evolutionary relationships of non-random LOH, TP53 and CDKN2A mutations, CDKN2A CpG-island methylation and ploidy during neoplastic progression. Diploid cell progenitors with somatic genetic or epigenetic abnormalities in TP53 and CDKN2A were capable of clonal expansion, spreading to large regions of oesophageal mucosa. The subsequent evolution of neoplastic progeny frequently involved bifurcations and LOH at 5q, 13q and 18q that occurred in no obligate order relative to each other, DNA-content aneuploidy or cancer. Our results indicate that clonal evolution is more complex than predicted by linear models.  相似文献   
878.
Human β-defensins   总被引:1,自引:0,他引:1  
  相似文献   
879.
Increasing evidence implies altered signaling through the neurotrophic receptor tyrosine kinase TrkB in promoting tumor formation and metastasis. TrkB, sometimes in conjunction with its primary ligand BDNF, is often overexpressed in a variety of human cancers, ranging from neuroblastomas to pancreatic ductal adenocarcinomas, in which it may allow tumor expansion and contribute to resistance to anti-tumor agents. In vitro, TrkB acts as a potent suppressor of anoikis (detachment-induced apoptosis), which is associated with the acquisition of an aggressive tumorigenic and metastatic phenotype in vivo. In view of its predicted contribution to tumorigenicity and metastasis in humans, TrkB corresponds to a potential drug target, and preclinical models have already been established. The encouraging results of pharmacological Trk inhibitors in tumor xenograft models suggest that TrkB inhibition may represent a promising novel anti-tumor therapeutic strategy. This hypothesis is currently being evaluated in clinical trials. Here, we will discuss the latest developments on TrkB in these contexts as well as highlight some critical questions that remain to be addressed for evaluating TrkB as a therapeutic target in cancer. Received 12 October 2005; received after revision 19 December 2005; accepted 11 January 2006  相似文献   
880.
Betaine homocysteine methyltransferase (BHMT), a Zn2+-dependent thiolmethyltransferase, contributes to the regulation of homocysteine levels, increases in which are considered a risk factor for cardiovascular diseases. Most plasma homocysteine is generated through the liver methionine cycle, in which BHMT metabolizes approximately 25% of this non-protein amino acid. This process allows recovery of one of the three methylation equivalents used in phosphatidylcholine synthesis through transmethylation, a major homocysteine-producing pathway. Although BHMT has been known for over 40 years, the difficulties encountered in its isolation precluded detailed studies until very recently. Thus, the last 10 years, since the sequence became available, have yielded extensive structural and functional data. Moreover, recent findings offer clues for potential new functions for BHMT. The purpose of this review is to provide an integrated view of the knowledge available on BHMT, and to analyze its putative roles in other processes through interactions uncover to date. Received 26 May 2006; received after revision 3 July 2006; accepted 24 August 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号