首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49504篇
  免费   130篇
  国内免费   172篇
系统科学   250篇
丛书文集   1052篇
教育与普及   108篇
理论与方法论   271篇
现状及发展   22218篇
研究方法   1875篇
综合类   23274篇
自然研究   758篇
  2013年   360篇
  2012年   666篇
  2011年   1423篇
  2010年   302篇
  2008年   843篇
  2007年   934篇
  2006年   918篇
  2005年   941篇
  2004年   969篇
  2003年   871篇
  2002年   904篇
  2001年   1408篇
  2000年   1311篇
  1999年   917篇
  1992年   878篇
  1991年   691篇
  1990年   721篇
  1989年   733篇
  1988年   712篇
  1987年   730篇
  1986年   760篇
  1985年   945篇
  1984年   742篇
  1983年   605篇
  1982年   531篇
  1981年   563篇
  1980年   689篇
  1979年   1546篇
  1978年   1303篇
  1977年   1270篇
  1976年   952篇
  1975年   995篇
  1974年   1469篇
  1973年   1240篇
  1972年   1283篇
  1971年   1510篇
  1970年   2033篇
  1969年   1602篇
  1968年   1437篇
  1967年   1508篇
  1966年   1338篇
  1965年   995篇
  1964年   291篇
  1959年   559篇
  1958年   938篇
  1957年   715篇
  1956年   571篇
  1955年   519篇
  1954年   591篇
  1948年   346篇
排序方式: 共有10000条查询结果,搜索用时 968 毫秒
781.
Digoxin and ouabain are steroid drugs that inhibit the Na+/K+-ATPase, and are widely used in the treatment of heart diseases. They may also have additional effects, such as on metabolism of steroid hormones, although until now no evidence has been provided about the effects of these cardioactive glycosides on the synthesis of cholesterol. Here we report that digoxin and ouabain increased the synthesis of cholesterol in human liver HepG2 cells, enhancing the activity and the expression of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), the rate-limiting enzyme of the cholesterol synthesis. This effect was mediated by the binding of the sterol regulatory element binding protein-2 (SREBP-2) to the HMGCR promoter, and was lost in cells silenced for SREBP-2 or loaded with increasing amounts of cholesterol. Digoxin and ouabain competed with cholesterol for binding to the SREBP-cleavage-activating protein, and are critical regulators of cholesterol synthesis in human liver cells. Received 10 January 2009; received after revision 11 February 2009; accepted 6 March 2009  相似文献   
782.
The exposure of phosphatidylserine (PS) at the cell surface plays a critical role in blood coagulation and serves as a macrophage recognition moiety for the engulfment of apoptotic cells. Previous observations have shown that a high extracellular [K+] and selective K+ channel blockers inhibit PS exposure in platelets and erythrocytes. Here we show that the rate of PS exposure in erythrocytes decreases by ~50% when the intracellular [K+] increases from 0 to physiological concentrations. Using resealed erythrocyte membranes, we further show that lipid scrambling is inducible by raising the intracellular [Ca2+] and that K+ ions have a direct inhibitory effect on this process. Lipid scrambling in resealed ghosts occurs in the absence of cell shrinkage and microvesicle formation, processes that are generally attributed to Ca2+-induced lipid scrambling in intact erythrocytes. Thus, opening of Ca2+-sensitive K+ channels causes loss of intracellular K+ that results in reduced intrinsic inhibitory effect of these ions on scramblase activity. Received 11 September 2008; received after revision 17 October 2008; accepted 27 October 2008  相似文献   
783.
Indenone KR-62776 acts as an agonist of PPARγ without inducing obesity in animal models and cells. X-ray crystallography reveals that the indenone occupies the binding pocket in a different manner than rosiglitazone. 2-Dimensional gel-electrophoresis showed that the expression of 42 proteins was altered more than 2.0-fold between KR-62776- or rosiglitazone-treated adipocyte cells and control cells. Rosiglitazone down-regulated the expression of ERK1/2 and suppressed the phosphorylation of ERK1/2 in these cells. However, the expression of ERK1/2 was up-regulated in KR-62776-treated cells. Phosphorylated ERK1/2, activated by indenone, affects the localization of PPARγ, suggesting a mechanism for indenone-inhibition of adipogenesis in 3T3-L1 preadipocyte cells. The preadipocyte cells are treated with ERK1/2 inhibitor PD98059, a large amount of the cells are converted to adipocyte cells. These results support the conclusion that the localization of PPARγ is one of the key factors explaining the biological responses of the ligands. Received 04 March 2009; received after revision 13 March 2009; accepted 17 March 2009  相似文献   
784.
Functions and pathologies of BiP and its interaction partners   总被引:1,自引:1,他引:0  
The endoplasmic reticulum (ER) is involved in a variety of essential and interconnected processes in human cells, including protein biogenesis, signal transduction, and calcium homeostasis. The central player in all these processes is the ER-lumenal polypeptide chain binding protein BiP that acts as a molecular chaperone. BiP belongs to the heat shock protein 70 (Hsp70) family and crucially depends on a number of interaction partners, including co-chaperones, nucleotide exchange factors, and signaling molecules. In the course of the last five years, several diseases have been linked to BiP and its interaction partners, such as a group of infectious diseases that are caused by Shigella toxin producing E. coli. Furthermore, the inherited diseases Marinesco-Sj?gren syndrome, autosomal dominant polycystic liver disease, Wolcott-Rallison syndrome, and several cancer types can be considered BiP-related diseases. This review summarizes the physiological and pathophysiological characteristics of BiP and its interaction partners. Received 20 November 2008; received after revision 09 December 2008; accepted 12 December 2008  相似文献   
785.
Large conductance, Ca2+-activated potassium (BK) channels are widely expressed throughout the animal kingdom and play important roles in many physiological processes, such as muscle contraction, neural transmission and hearing. These physiological roles derive from the ability of BK channels to be synergistically activated by membrane voltage, intracellular Ca2+ and other ligands. Similar to voltage-gated K+ channels, BK channels possess a pore-gate domain (S5–S6 transmembrane segments) and a voltage-sensor domain (S1–S4). In addition, BK channels contain a large cytoplasmic C-terminal domain that serves as the primary ligand sensor. The voltage sensor and the ligand sensor allosterically control K+ flux through the pore-gate domain in response to various stimuli, thereby linking cellular metabolism and membrane excitability. This review summarizes the current understanding of these structural domains and their mutual interactions in voltage-, Ca2+ - and Mg2+ -dependent activation of the channel. Received 25 September 2008; received after revision 23 October 2008; accepted 24 October 2008  相似文献   
786.
787.
Studies on identification, derivation and characterization of human stem cells in the last decade have led to high expectations in the field of regenerative medicine. Although it is clear that for successful stem cell-based therapy several obstacles have to be overcome, other opportunities lay ahead for the use of human stem cells. A more immediate application would be the development of human models for cell-type specific differentiation and disease in vitro. Cardiomyocytes can be generated from stem cells, which have been shown to follow similar molecular events of cardiac development in vivo. Furthermore, several monogenic cardiovascular diseases have been described, for which in vitro models in stem cells could be generated. Here, we will discuss the potential of human embryonic stem cells, cardiac stem cells and the recently described induced pluripotent stem cells as models for cardiac differentiation and disease. Received 07 August 2008; received after revision 26 September 2008; accepted 03 October 2008  相似文献   
788.
Cytoplasmic translation is under sophisticated control but how cells adapt its rate to constitutive loss of mitochondrial oxidative phosphorylation is unknown. Here we show that translation is repressed in cells with the pathogenic A3243G mtDNA mutation or in mtDNA-less ρ0 cells by at least two distinct pathways, one transiently targeting elongation factor eEF-2 and the other initiation factor eIF-2α constitutively. Under conditions of exponential cell growth and mammalian target of rapamycin (mTOR) activation, eEF-2 becomes transiently phosphorylated by an AMP-activated protein kinase (AMPK)-dependent pathway, especially high in mutant cells. Independent of AMPK and mTOR, eIF-2α is constitutively phosphorylated in mutant cells, likely a signature of endoplasmic reticulum (ER)-stress response induced by the loss of oxidative phosphorylation. While the AMPK/eEF-2K/eEF-2 pathway appears to function in adaptation to physiological fluctuations in ATP levels in the mutant cells, the ER stress signified by constitutive protein synthesis inhibition through eIF-2α-mediated repression of translation initiation may have pathobiochemical consequences. Received 29 October 2008; received after revision 11 December 2008; accepted 16 December 2008  相似文献   
789.
Red blood cells (RBC) have emerged as a novel regulatory cell type endowed with bioactivities toward activated human T cells. Herein we show that the RBC bioactivities act on intracellular pathways initiated by T cell receptor (TCR)-dependent and -independent stimuli, including IL-2, IL-15, and the mixture of phorbol dibutyrate and ionomycin. The RBC bioactivities preserve the antioxidant status and are capable of rescuing activated T cells from cell death induced by serum deprivation. They are not mediated by glycosylphosphatidylinositol-linked receptors or sialic acids, and kinetic studies revealed that they hasten the entrance into the cell cycle. By using cyclosporine A (CsA) and rapamycin (Rapa) we show that the RBC bioactivities are calcineurin-dependent. Thus, treatment of T cells with CsA, but not Rapa, impaired RBC bioactivities, and preincubation of RBC with CsA completely abolished their bioactivities. We have demonstrated that RBC carry out bioactivities that are sensitive to CsA.  相似文献   
790.
Hypoxia refers to environmental or clinical settings that potentially threaten tissue oxygen homeostasis. One unique aspect of skeletal muscle is that, in addition to hypoxia, oxygen balance in this tissue may be further compromised when exercise is superimposed on hypoxia. This review focuses on the cellular and molecular responses of human skeletal muscle to acute and chronic hypoxia, with emphasis on physical exercise and training. Based on published work, it is suggested that hypoxia does not appear to promote angiogenesis or to greatly alter oxidative enzymes in skeletal muscle at rest. Although the HIF-1 pathway in skeletal muscle is still poorly documented, emerging evidence suggests that muscle HIF-1 signaling is only activated to a minor degree by hypoxia. On the other hand, combining hypoxia with exercise appears to improve some aspects of muscle O2 transport and/or metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号