首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1677篇
  免费   1篇
  国内免费   22篇
系统科学   25篇
丛书文集   39篇
教育与普及   69篇
理论与方法论   9篇
现状及发展   167篇
研究方法   302篇
综合类   1088篇
自然研究   1篇
  2022年   5篇
  2018年   3篇
  2017年   11篇
  2016年   4篇
  2013年   5篇
  2012年   134篇
  2011年   155篇
  2010年   38篇
  2009年   4篇
  2008年   123篇
  2007年   148篇
  2006年   148篇
  2005年   135篇
  2004年   120篇
  2003年   82篇
  2002年   89篇
  2001年   64篇
  2000年   76篇
  1999年   25篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   10篇
  1992年   6篇
  1991年   15篇
  1990年   14篇
  1989年   9篇
  1988年   6篇
  1987年   6篇
  1985年   5篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1980年   7篇
  1971年   3篇
  1970年   7篇
  1966年   6篇
  1959年   15篇
  1958年   29篇
  1957年   18篇
  1956年   20篇
  1955年   17篇
  1954年   23篇
  1953年   12篇
  1952年   15篇
  1951年   9篇
  1950年   7篇
  1949年   5篇
  1948年   10篇
排序方式: 共有1700条查询结果,搜索用时 15 毫秒
991.
992.
Treatment of advanced stages of prostate carcinoma with histone-deacetylase inhibitors entails expression of human procarboxypeptidase-A4 (hPCPA4). The three-dimensional structure of hPCPA4 has been solved and shows the features of related metallocarboxypeptidase zymogens, with a preformed α/β/-hydrolase active-enzyme moiety (hCPA4) and an inhibiting pro-domain (PD). The protease moiety recalls a sphere, out of which a spherical cone has been cut. This results in a funnel-like structure, at the bottom of which the active-site cleft resides. The border of this funnel is shaped by loops, which are responsible for the interaction with the PD, characterised by a large interface area and relatively few contacts. Such an inhibitory mode is evocative of the recently reported structure of the human inhibitor latexin in its complex with hCPA4. The main contacting structure of latexin is similar to the one employed for PD inhibition. In both cases, active-site blocking relies mainly on a loop provided by the central part of a β sheet.R. Garcia-Castellanos and R. Bonet-Figueredo contributed equally to this study and share first authorship.Received 28 April 2005; received after revision 1 June 2005; accepted 29 June 2005  相似文献   
993.
The extracellular deposition of misfolded proteins is a characteristic of many debilitating age-related disorders. However, little is known about the specific mechanisms that act to suppress this process in vivo. Clusterin (CLU) is an extracellular chaperone that forms stable and soluble complexes with misfolded client proteins. Here we explore the fate of complexes formed between CLU and misfolded proteins both in vitro and in a living organism. We show that proteins injected into rats are cleared more rapidly from circulation when complexed with CLU as a result of their more efficient localization to the liver and that this clearance is delayed by pre-injection with the scavenger receptor inhibitor fucoidan. The CLU–client complexes were found to bind preferentially, in a fucoidan-inhibitable manner, to human peripheral blood monocytes and isolated rat hepatocytes and in the latter cell type were internalized and targeted to lysosomes for degradation. The data suggest, therefore, that CLU plays a key role in an extracellular proteostasis system that recognizes, keeps soluble, and then rapidly mediates the disposal of misfolded proteins.  相似文献   
994.
Calorie restriction and the nutrient sensing signaling pathways   总被引:3,自引:0,他引:3  
Calorie restriction (CR) is the most potent regimen known to extend the life span in multiple species. CR has also been shown to ameliorate several age-associated disorders in mammals and perhaps humans. CR induces diverse metabolic changes in organisms, and it is currently unclear whether and how these metabolic changes lead to life span extension. Recent studies in model systems have provided insight into the molecular mechanisms by which CR extends life span. In this review, we summarize and provide recent updates on multiple nutrient signaling pathways that have been connected to CR and longevity regulation. The roles of highly conserved longevity regulators – the Sirtuin family – in CR are also discussed. Received 25 August 2006; received after revision 9 October 2006; accepted 13 December 2006  相似文献   
995.
996.
Lipid droplets have been considered for a long time as inert intracytoplasmic deposits formed within cells under various conditions. Recently, new tools and new approaches have been used to visualize and study these intracellular structures. This revealed new aspects of lipid droplets biology and pointed out their organized structure and dynamic composition. In adipocytes, the specialized cell type for the storage of energy as fat, lipid droplets are particularly well-developed organelles and exhibit unique properties. Also discussed in this paper is the view that lipid droplets, through specific candidate constituents, can play a role in sensing the level of their lipid stores by adipocytes.  相似文献   
997.
The synthesis of polymer nanoparticles (NPs) with controlled characteristics has become an appealing research topic lately. Nanomedicine, and especially drug delivery and imaging, are fields that require particles of a controlled size and with a tailored arrangement of functional groups. Intramolecular cross-linking or collapse of single polymer chains has emerged as an efficient alternative for the synthesis of well-defined polymer NPs. This technique allows the generation of 1.5–20 nm particles with a wide variety of chemical compositions and functionalities. This review begins by gathering synthetic strategies described in the literature and groups them into four main synthetic methods: homo-functional collapse, hetero-functional collapse, crosslinker-mediated collapse, and one-block collapse of diblock or triblock copolymers. Afterwards, the main characterization techniques and physical properties of single-chain polymer NPs (SCPNs) are exposed. Finally, several applications in nanomedicine are mentioned followed by some future perspectives.  相似文献   
998.
Thymocytes must complete an elaborate developmental program in the thymus to ultimately generate T cells that express functional but neither harmful nor useless TCRs. Each developmental step coincides with dynamic relocation of the thymocytes between anatomically discrete thymic microenvironments, suggesting that thymocytes’ migration is tightly regulated by their developmental status. Chemokines produced by thymic stromal cells and chemokine receptors on the thymocytes play an indispensable role in guiding developing thymocytes into the different microenvironments. In addition to long-range migration, chemokines increase the thymocytes’ motility, enhancing their interaction with stromal cells. During the past several years, much progress has been made to determine the various signals that guide thymocytes on their journey within the thymus. In this review, we summarize the progress in identifying chemokines and other chemoattractant signals that direct intrathymic migration. Furthermore, we discuss the recent advances of two-photon microscopy in determining dynamic motility and interaction behavior of thymocytes within distinct compartments to provide a better understanding of the relationship between thymocyte motility and development.  相似文献   
999.
γ-Glutamyltranspeptidases (γ-GTs) are ubiquitous enzymes that catalyze the hydrolysis of γ-glutamyl bonds in glutathione and glutamine and the transfer of the released γ-glutamyl group to amino acids or short peptides. These enzymes are involved in glutathione metabolism and play critical roles in antioxidant defense, detoxification, and inflammation processes. Moreover, γ-GTs have been recently found to be involved in many physiological disorders, such as Parkinson's disease and diabetes. In this review, the main biochemical and structural properties of γ-GTs isolated from different sources, as well as their conformational stability and mechanism of catalysis, are described and examined with the aim of contributing to the discussion on their structure-function relationships. Possible applications of γ-glutamyltranspeptidases in different fields of biotechnology and medicine are also discussed.  相似文献   
1000.
Ample clinical and preclinical evidence indicates that macrophages interact with tumor cells as well as with virtually all populations of host cells present in the tumor microenvironment. This crosstalk can strongly promote malignancy, but also has in principle the potential to inhibit tumor growth. Thus, it is of the utmost importance to improve our understanding of the mechanisms driving the pro- and antimalignant behavior of tumor-associated macrophages (TAMs) in order to develop better anticancer therapies. In this review, we discuss the biological consequences of reciprocal interactions between TAMs, cancer cells, endothelial cells, fibroblasts and other leukocyte subfractions within tumors. It was recently elucidated that tumors specifically educate macrophages to secrete growth arrest-specific gene 6 (Gas6), the common ligand of the Tyro3, Axl, Mer receptor (TAMR) family. In turn, Gas6 fosters tumor growth by promoting cancer cell proliferation. Therefore, the Gas6–TAMR axis might represent a novel target for disrupting tumor–macrophage crosstalk. We summarize here what is known about TAMR and their ligands in (human) cancer biology. In order to shed more light on the role of macrophages in human cancer, we additionally provide an overview of what is currently known about the prognostic impact of TAMs in human cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号