首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   812篇
  免费   0篇
  国内免费   9篇
系统科学   23篇
教育与普及   3篇
理论与方法论   6篇
现状及发展   76篇
研究方法   165篇
综合类   522篇
自然研究   26篇
  2023年   1篇
  2021年   6篇
  2020年   5篇
  2019年   2篇
  2018年   5篇
  2017年   6篇
  2016年   9篇
  2015年   7篇
  2014年   3篇
  2013年   18篇
  2012年   83篇
  2011年   109篇
  2010年   27篇
  2009年   9篇
  2008年   82篇
  2007年   83篇
  2006年   69篇
  2005年   70篇
  2004年   59篇
  2003年   54篇
  2002年   62篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
  1972年   4篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1967年   2篇
  1965年   1篇
  1958年   1篇
排序方式: 共有821条查询结果,搜索用时 15 毫秒
141.
Kern AD  Kondrashov FA 《Nature genetics》2004,36(11):1207-1212
The function of protein and RNA molecules depends on complex epistatic interactions between sites. Therefore, the deleterious effect of a mutation can be suppressed by a compensatory second-site substitution. In relating a list of 86 pathogenic mutations in human tRNAs encoded by mitochondrial genes to the sequences of their mammalian orthologs, we noted that 52 pathogenic mutations were present in normal tRNAs of one or several nonhuman mammals. We found at least five mechanisms of compensation for 32 pathogenic mutations that destroyed a Watson-Crick pair in one of the four tRNA stems: restoration of the affected Watson-Crick interaction (25 cases), strengthening of another pair (4 cases), creation of a new pair (8 cases), changes of multiple interactions in the affected stem (11 cases) and changes involving the interaction between the loop and stem structures (3 cases). A pathogenic mutation and its compensating substitution are fixed in a lineage in rapid succession, and often a compensatory interaction evolves convergently in different clades. At least 10%, and perhaps as many as 50%, of all nucleotide substitutions in evolving mammalian tRNAs participate in such interactions, indicating that the evolution of tRNAs proceeds along highly epistatic fitness ridges.  相似文献   
142.
Book reviews     
This paper traces the relationship between the food committees of the Royal Society and government during the First World War, concentrating on the period up to the resignation of Lord Devonport as first Food Controller. It argues that, in the context of a radical public science discourse emanating from some sections of the scientific community and greatly increased contacts between scientists and government, the food scientists of the committees were moved to press for a formalization of the committees' role in food policy. The members constantly manoeuvred to achieve this aim, but also used a network of alternative channels into the heart of the policy process to get their findings translated into hard policy. In doing so, they explicitly rehearsed characteristic 'public science' arguments. In the institutional blur of wartime state-science relations, scientists often got close to the policy-making process. Post-War, the state swiftly moved to clarify the position: science was to be given more money, but was to be specifically blocked by new administrative arrangements embodied in the Haldane Report on the Machinery of Government from having any say in the core areas of general policy, the expert domain of the generalist policy-maker.  相似文献   
143.
    
  相似文献   
144.
DING proteins, identified mainly by their eponymous N-terminal sequences, are ubiquitous in living organisms. Amongst bacteria, they are common in pseudomonads, and have been characterised with respect to genetics and structure. They form part of a wider family of phosphate-binding proteins, with emerging roles in phosphate acquisition and pathogenicity. Many DING proteins have been isolated in eukaryotes, in which they have been associated with very diverse biological activities, often in the context of possible signalling roles. Disease states in which DING proteins have been implicated include rheumatoid arthritis, lithiasis, atherosclerosis, some tumours and tumour-associated cachexia, and bacterial and viral adherence. Complete genetic and structural characterisation of eukaryotic DING genes and proteins is still lacking, though the phosphate-binding site seems to be conserved. Whether as bacterial proteins related to bacterial pathogenicity, or as eukaryotic components of biochemical signalling systems, DING proteins require further study. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
145.
Small-molecule inhibitors of protein function are powerful tools for biological analysis and can lead to the development of new drugs. However, a major bottleneck in generating useful small-molecule tools is target identification. Here we show that Caenorhabditis elegans can provide a platform for both the discovery of new bioactive compounds and target identification. We screened 14,100 small molecules for bioactivity in wild-type worms and identified 308 compounds that induce a variety of phenotypes. One compound that we named nemadipine-A induces marked defects in morphology and egg-laying. Nemadipine-A resembles a class of widely prescribed anti-hypertension drugs called the 1,4-dihydropyridines (DHPs) that antagonize the alpha1-subunit of L-type calcium channels. Through a genetic suppressor screen, we identified egl-19 as the sole candidate target of nemadipine-A, a conclusion that is supported by several additional lines of evidence. egl-19 encodes the only L-type calcium channel alpha1-subunit in the C. elegans genome. We show that nemadipine-A can also antagonize vertebrate L-type calcium channels, demonstrating that worms and vertebrates share the orthologous protein target. Conversely, FDA-approved DHPs fail to elicit robust phenotypes, making nemadipine-A a unique tool to screen for genetic interactions with this important class of drugs. Finally, we demonstrate the utility of nemadipine-A by using it to reveal redundancy among three calcium channels in the egg-laying circuit. Our study demonstrates that C. elegans enables rapid identification of new small-molecule tools and their targets.  相似文献   
146.
To rapidly identify genes required for early vertebrate development, we are carrying out a large-scale, insertional mutagenesis screen in zebrafish, using mouse retroviral vectors as the mutagen. We will obtain mutations in 450 to 500 different genes--roughly 20% of the genes that can be mutated to produce a visible embryonic phenotype in this species--and will clone the majority of the mutated alleles. So far, we have isolated more than 500 insertional mutants. Here we describe the first 75 insertional mutants for which the disrupted genes have been identified. In agreement with chemical mutagenesis screens, approximately one-third of the mutants have developmental defects that affect primarily one or a small number of organs, body shape or swimming behavior; the rest of the mutants show more widespread or pleiotropic abnormalities. Many of the genes we identified have not been previously assigned a biological role in vivo. Roughly 20% of the mutants result from lesions in genes for which the biochemical and cellular function of the proteins they encode cannot be deduced with confidence, if at all, from their predicted amino-acid sequences. All of the genes have either orthologs or clearly related genes in human. These results provide an unbiased view of the genetic construction kit for a vertebrate embryo, reveal the diversity of genes required for vertebrate development and suggest that hundreds of genes of unknown biochemical function essential for vertebrate development have yet to be identified.  相似文献   
147.
Several proteins implicated in the pathogenesis of polycystic kidney disease (PKD) localize to cilia. Furthermore, cilia are malformed in mice with PKD with mutations in TgN737Rpw (encoding polaris). It is not known, however, whether ciliary dysfunction occurs or is relevant to cyst formation in PKD. Here, we show that polycystin-1 (PC1) and polycystin-2 (PC2), proteins respectively encoded by Pkd1 and Pkd2, mouse orthologs of genes mutated in human autosomal dominant PKD, co-distribute in the primary cilia of kidney epithelium. Cells isolated from transgenic mice that lack functional PC1 formed cilia but did not increase Ca(2+) influx in response to physiological fluid flow. Blocking antibodies directed against PC2 similarly abolished the flow response in wild-type cells as did inhibitors of the ryanodine receptor, whereas inhibitors of G-proteins, phospholipase C and InsP(3) receptors had no effect. These data suggest that PC1 and PC2 contribute to fluid-flow sensation by the primary cilium in renal epithelium and that they both function in the same mechanotransduction pathway. Loss or dysfunction of PC1 or PC2 may therefore lead to PKD owing to the inability of cells to sense mechanical cues that normally regulate tissue morphogenesis.  相似文献   
148.
149.
Fraser syndrome is a recessive, multisystem disorder presenting with cryptophthalmos, syndactyly and renal defects and associated with loss-of-function mutations of the extracellular matrix protein FRAS1. Fras1 mutant mice have a blebbed phenotype characterized by intrauterine epithelial fragility generating serous and, later, hemorrhagic blisters. The myelencephalic blebs (my) strain has a similar phenotype. We mapped my to Frem2, a gene related to Fras1 and Frem1, and showed that a Frem2 gene-trap mutation was allelic to my. Expression of Frem2 in adult kidneys correlated with cyst formation in my homozygotes, indicating that the gene is required for maintaining the differentiated state of renal epithelia. Two individuals with Fraser syndrome were homozygous with respect to the same missense mutation of FREM2, confirming genetic heterogeneity. This is the only missense mutation reported in any blebbing mutant or individual with Fraser syndrome, suggesting that calcium binding in the CALXbeta-cadherin motif is important for normal functioning of FREM2.  相似文献   
150.
The microtubule-associated protein tau (encoded by MAPT) and several tau kinases have been implicated in neurodegeneration, but only MAPT has a proven role in disease. We identified mutations in the gene encoding tau tubulin kinase 2 (TTBK2) as the cause of spinocerebellar ataxia type 11. Affected brain tissue showed substantial cerebellar degeneration and tau deposition. These data suggest that TTBK2 is important in the tau cascade and in spinocerebellar degeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号