首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
系统科学   1篇
现状及发展   14篇
研究方法   7篇
综合类   29篇
自然研究   9篇
  2012年   3篇
  2011年   10篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1975年   1篇
  1967年   1篇
  1962年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
51.
Described as new is Cryptantha welshii Thorne & Higgins from the White River Valley of Nye County, Nevada.  相似文献   
52.
A list of species, illustrated keys to nymphs and adults, distribution, and biological notes are presented for 24 stonefly species occurring in Louisiana. Leuctra moha?, Pteronarcys dorsata, Helopicus subvarians, Paragnetina kansensis, Paragnetina immarginata, Phasganophora capitata, and Acroneuria evoluta are recorded only from the florida parishes east of the Mississippi River. Isoperla Coushatta, Isoperla mohri, Neoperla clymene, an undescribed Neoperla (Sp. A), Paragnetina fumosa, Acroneuria abnormis, Acroneuria arenosa, Perlinella drymo, and Perlesta placida are found both east and west of the Mississippi; and Allocapnia granulata, Allocapnia malverna, Amphinemoura nigritta, and three species of Taeniopteryx have been recorded only west of the Mississippi. Habitats are primarily sand-bottomed streams of pine-hardwood rolling hills, constituting a portion of the western Gulf Coastal Plain. Few stoneflies occur in streams of the Mississippi Alluvial Plain, the Alluvial Atchafalaya Basin, or the lowlands along the Red River.  相似文献   
53.
Ath1 is a quantitative trait locus on mouse chromosome 1 that renders C57BL/6 mice susceptible and C3H/He mice resistant to diet-induced atherosclerosis. The quantitative trait locus region encompasses 11 known genes, including Tnfsf4 (also called Ox40l or Cd134l), which encodes OX40 ligand. Here we report that mice with targeted mutations of Tnfsf4 had significantly (P 相似文献   
54.
55.
56.
Expression of P-glycoprotein, the product of the MDR1 gene, confers multidrug resistance on cell lines and human tumours (reviewed in refs 1,2). P-glycoprotein (relative molecular mass 170,000) is an ATP-dependent, active transporter which pumps hydrophobic drugs out of cells, but its normal physiological role is unknown. It is a member of the ABC (ATP-binding cassette) superfamily of transporters, which includes many bacterial transport systems, the putative peptide transporter from the major histocompatibility locus, and the product of the cystic fibrosis gene (the cystic fibrosis transmembrane regulator, CFTR). CFTR is located in the apical membranes of many secretory epithelia and is associated with a cyclic AMP-regulated chloride channel. At least two other chloride channels are present in epithelial cells, regulated by cell volume and by intracellular Ca2+, respectively. Because of the structural and sequence similarities between P-glycoprotein and CFTR, and because P-glycoprotein is abundant in many secretory epithelia, we examined whether P-glycoprotein might be associated with one or other of these channels. We report here that expression of P-glycoprotein generates volume-regulated, ATP-dependent, chloride-selective channels, with properties similar to channels characterized previously in epithelial cells.  相似文献   
57.
Summary Except for a markedly reduced anodal electrophoretic mobility, the serum albumin of the Galapagos marine iguana was physico-chemically identical to that of terrestrial iguanids. Reduction in albumin net charge may have facilitated the adaptation of this species to a semi-aquatic environment.  相似文献   
58.
M D Manson  V Blank  G Brade  C F Higgins 《Nature》1986,321(6067):253-256
Bacterial chemotaxis provides a simple model system for the more complex sensory responses of multicellular eukaryotic organisms. In Escherichia coli, methylation and demethylation of four related membrane proteins, the methyl-accepting chemotaxis proteins (or MCPs), is central to chemotactic sensing and signal transduction. Three of these proteins, Tar, Tsr and Trg, have been assigned specific roles in chemotaxis. However, the role of the fourth MCP, Tap, has remained obscure. We demonstrate here that Tap functions as a conventional signal transducer, enabling the cell to respond chemotactically to dipeptides. This provides the first evidence of specific bacterial chemotaxis towards peptides. Peptide taxis requires the function of a periplasmic component of the dipeptide permease. This protein represents the first example of a periplasmic chemoreceptor that does not have a sugar substrate.  相似文献   
59.
The ATP-binding cassette (ABC) superfamily of transport systems now includes over thirty proteins that share extensive sequence similarity and domain organization. This superfamily includes the well characterized periplasmic binding protein-dependent uptake systems of prokaryotes, bacterial exporters, and eukaryotic proteins including the P-glycoprotein associated with multidrug resistance in tumours (MDR), the STE6 gene product that mediates export of yeast a-factor mating pheromone, pfMDR that is implicated in chloroquine resistance of the malarial parasite, and the product of the cystic fibrosis gene (CFTR). Here we present a tertiary structure model of the ATP-binding cassettes characteristic of this class of transport system, based on similarities between the predicted secondary structures of members of this family and the previously determined structure of adenylate kinase. This model has implications for both the molecular basis of transport and cystic fibrosis and provides a framework for further experimentation.  相似文献   
60.
Entanglement-free Heisenberg-limited phase estimation   总被引:1,自引:0,他引:1  
Higgins BL  Berry DW  Bartlett SD  Wiseman HM  Pryde GJ 《Nature》2007,450(7168):393-396
Measurement underpins all quantitative science. A key example is the measurement of optical phase, used in length metrology and many other applications. Advances in precision measurement have consistently led to important scientific discoveries. At the fundamental level, measurement precision is limited by the number N of quantum resources (such as photons) that are used. Standard measurement schemes, using each resource independently, lead to a phase uncertainty that scales as 1/square root N-known as the standard quantum limit. However, it has long been conjectured that it should be possible to achieve a precision limited only by the Heisenberg uncertainty principle, dramatically improving the scaling to 1/N (ref. 3). It is commonly thought that achieving this improvement requires the use of exotic quantum entangled states, such as the NOON state. These states are extremely difficult to generate. Measurement schemes with counted photons or ions have been performed with N < or = 6 (refs 6-15), but few have surpassed the standard quantum limit and none have shown Heisenberg-limited scaling. Here we demonstrate experimentally a Heisenberg-limited phase estimation procedure. We replace entangled input states with multiple applications of the phase shift on unentangled single-photon states. We generalize Kitaev's phase estimation algorithm using adaptive measurement theory to achieve a standard deviation scaling at the Heisenberg limit. For the largest number of resources used (N = 378), we estimate an unknown phase with a variance more than 10 dB below the standard quantum limit; achieving this variance would require more than 4,000 resources using standard interferometry. Our results represent a drastic reduction in the complexity of achieving quantum-enhanced measurement precision.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号