首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5098篇
  免费   21篇
  国内免费   30篇
系统科学   107篇
丛书文集   26篇
教育与普及   17篇
理论与方法论   54篇
现状及发展   1792篇
研究方法   432篇
综合类   2573篇
自然研究   148篇
  2017年   33篇
  2016年   36篇
  2013年   39篇
  2012年   211篇
  2011年   364篇
  2010年   88篇
  2009年   32篇
  2008年   189篇
  2007年   255篇
  2006年   214篇
  2005年   228篇
  2004年   240篇
  2003年   205篇
  2002年   210篇
  2001年   110篇
  2000年   105篇
  1999年   77篇
  1992年   92篇
  1991年   52篇
  1990年   51篇
  1989年   42篇
  1988年   35篇
  1987年   43篇
  1986年   48篇
  1985年   57篇
  1984年   59篇
  1983年   31篇
  1982年   38篇
  1980年   47篇
  1979年   96篇
  1978年   65篇
  1977年   84篇
  1976年   55篇
  1975年   53篇
  1974年   105篇
  1973年   88篇
  1972年   75篇
  1971年   85篇
  1970年   119篇
  1969年   106篇
  1968年   117篇
  1967年   99篇
  1966年   107篇
  1965年   74篇
  1964年   31篇
  1958年   49篇
  1957年   39篇
  1956年   44篇
  1955年   31篇
  1948年   32篇
排序方式: 共有5149条查询结果,搜索用时 546 毫秒
131.
Genome-wide association studies (GWAS) have identified many risk loci for complex diseases, but effect sizes are typically small and information on the underlying biological processes is often lacking. Associations with metabolic traits as functional intermediates can overcome these problems and potentially inform individualized therapy. Here we report a comprehensive analysis of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We identified 37 genetic loci associated with blood metabolite concentrations, of which 25 show effect sizes that are unusually high for GWAS and account for 10-60% differences in metabolite levels per allele copy. Our associations provide new functional insights for many disease-related associations that have been reported in previous studies, including those for cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism and Crohn's disease. The study advances our knowledge of the genetic basis of metabolic individuality in humans and generates many new hypotheses for biomedical and pharmaceutical research.  相似文献   
132.
133.
Aldose reductase and aldehyde reductase belong to the aldo-keto reductase superfamily of enzymes whose members are responsible for a wide variety of biological functions. Aldose reductase has been identified as the first enzyme involved in the polyol pathway of glucose metabolism which converts glucose into sorbitol. Glucose over-utilization through the polyol pathway has been linked to tissue-based pathologies associated with diabetes complications, which make the development of a potent aldose reductase inhibitor an obvious and attractive strategy to prevent or delay the onset and progression of the complications. Structural studies of aldose reductase and the homologous aldehyde reductase in complex with inhibitor were carried out to explain the difference in the potency of enzyme inhibition. The aim of this review is to provide a comprehensive summary of previous studies to aid the development of aldose reductase inhibitors that may have less toxicity problems than the currently available ones. Received 4 December 2006; received after revision 12 February 2007; accepted 20 April 2007  相似文献   
134.
135.
The autosomal recessive disorder Shwachman-Diamond syndrome, characterized by bone marrow failure and leukemia predisposition, is caused by deficiency of the highly conserved Shwachman-Bodian-Diamond syndrome (SBDS) protein. Here, we identify the function of the yeast SBDS ortholog Sdo1, showing that it is critical for the release and recycling of the nucleolar shuttling factor Tif6 from pre-60S ribosomes, a key step in 60S maturation and translational activation of ribosomes. Using genome-wide synthetic genetic array mapping, we identified multiple TIF6 gain-of-function alleles that suppressed the pre-60S nuclear export defects and cytoplasmic mislocalization of Tif6 observed in sdo1Delta cells. Sdo1 appears to function within a pathway containing elongation factor-like 1, and together they control translational activation of ribosomes. Thus, our data link defective late 60S ribosomal subunit maturation to an inherited bone marrow failure syndrome associated with leukemia predisposition.  相似文献   
136.
Systematic genetic interaction studies have illuminated many cellular processes. Here we quantitatively examine genetic interactions among 26 Saccharomyces cerevisiae genes conferring resistance to the DNA-damaging agent methyl methanesulfonate (MMS), as determined by chemogenomic fitness profiling of pooled deletion strains. We constructed 650 double-deletion strains, corresponding to all pairings of these 26 deletions. The fitness of single- and double-deletion strains were measured in the presence and absence of MMS. Genetic interactions were defined by combining principles from both statistical and classical genetics. The resulting network predicts that the Mph1 helicase has a role in resolving homologous recombination-derived DNA intermediates that is similar to (but distinct from) that of the Sgs1 helicase. Our results emphasize the utility of small molecules and multifactorial deletion mutants in uncovering functional relationships and pathway order.  相似文献   
137.
Opitz-Kaveggia syndrome (also known as FG syndrome) is an X-linked disorder characterized by mental retardation, relative macrocephaly, hypotonia and constipation. We report here that the original family for whom the condition is named and five other families have a recurrent mutation (2881C>T, leading to R961W) in MED12 (also called TRAP230 or HOPA), a gene located at Xq13 that functions as a thyroid receptor-associated protein in the Mediator complex.  相似文献   
138.
More than a billion humans worldwide are predicted to be completely deficient in the fast skeletal muscle fiber protein alpha-actinin-3 owing to homozygosity for a premature stop codon polymorphism, R577X, in the ACTN3 gene. The R577X polymorphism is associated with elite athlete status and human muscle performance, suggesting that alpha-actinin-3 deficiency influences the function of fast muscle fibers. Here we show that loss of alpha-actinin-3 expression in a knockout mouse model results in a shift in muscle metabolism toward the more efficient aerobic pathway and an increase in intrinsic endurance performance. In addition, we demonstrate that the genomic region surrounding the 577X null allele shows low levels of genetic variation and recombination in individuals of European and East Asian descent, consistent with strong, recent positive selection. We propose that the 577X allele has been positively selected in some human populations owing to its effect on skeletal muscle metabolism.  相似文献   
139.
MicroRNAs are key regulators of gene expression, but the precise mechanisms underlying their interaction with their mRNA targets are still poorly understood. Here, we systematically investigate the role of target-site accessibility, as determined by base-pairing interactions within the mRNA, in microRNA target recognition. We experimentally show that mutations diminishing target accessibility substantially reduce microRNA-mediated translational repression, with effects comparable to those of mutations that disrupt sequence complementarity. We devise a parameter-free model for microRNA-target interaction that computes the difference between the free energy gained from the formation of the microRNA-target duplex and the energetic cost of unpairing the target to make it accessible to the microRNA. This model explains the variability in our experiments, predicts validated targets more accurately than existing algorithms, and shows that genomes accommodate site accessibility by preferentially positioning targets in highly accessible regions. Our study thus demonstrates that target accessibility is a critical factor in microRNA function.  相似文献   
140.
Autosomal recessive osteopetrosis is usually associated with normal or elevated numbers of nonfunctional osteoclasts. Here we report mutations in the gene encoding RANKL (receptor activator of nuclear factor-KB ligand) in six individuals with autosomal recessive osteopetrosis whose bone biopsy specimens lacked osteoclasts. These individuals did not show any obvious defects in immunological parameters and could not be cured by hematopoietic stem cell transplantation; however, exogenous RANKL induced formation of functional osteoclasts from their monocytes, suggesting that they could, theoretically, benefit from exogenous RANKL administration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号